Math, asked by mahakdohare5831, 6 months ago

the height of cone is15cm . its volume is 1570 find the radious​

Answers

Answered by Bidikha
10

Question -

Find the radius of the cone if the height of the cone is 15 cm and its volume is 1570cm²

Solution -

Given,

height of the cone (h) = 15cm

We know that,

volume \: of \:  \: the \: cone =  \frac{1}{3} \pi {r}^{2} h

Putting the values we will get -

1570 =  \frac{1}{3}   \times  \frac{22}{7}  \times  {r}^{2}  \times 15

1570 =  \frac{110}{7}  \times  {r}^{2}

 {r}^{2}  = 1570 \times  \frac{7}{110}

 {r}^{2}  = 99.909090......

 {r}^{2}  = 100(approx)

r =  \sqrt{100}

r = 10

Therefore the radius of the cone is 10 cm

Related Formulae -

1)volume \: of \: cone =  \frac{1}{3} \pi {r}^{2} h

2)curved \: surface \: area  \: of \:  \: cone = \pi \: rl

3)total \:  \: surface \:  \: area \:  \:   of  \: \: cone = \pi \: r(l + r)

Answered by Anonymous
65

\setlength{\unitlength}{30} \begin{picture}(10,6)  \linethickness{1.2} \qbezier(1,1)(3., 0)(5,1)\qbezier(1,1)(3.,2)(5,1)\put(3,1){\circle*{0.15}}\put(3,1){\line(0,1){3}}\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)(3,4)(3,4)\put(3,1){\line(1,0){2}}\put(3.2,1.1){$ \bf r  \: cm $}\put(1.9,1.9){$ \bf 15 \:  cm $}\put(4,3.5){\boxed{ $ \bf @ValiantPrinceiss</p><p> $}}\end{picture}

\bf GivEn\begin{cases} &amp; \sf{Height\;of\;cone = \bf{15\;cm}}  \\ &amp; \sf{Volume\;of\;cone = \bf{1570\;cm}}  \end{cases}

We have to find, radius of the cone.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\star\;{\underline{\frak{We\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\purple{Volume_{\;(cone)} = \dfrac{1}{3} \pi r^2 h}}}}\\ \\

\star\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf \frac{1}{3 } \times \frac{22}{7} \times {x}^{2} \times 15 \: = 1570 \\ \\

:\implies\sf {x}^{2} = 100\\ \\

:\implies\sf x = \sqrt{100}\\ \\

:\implies\sf x=10\\ \\

:\implies{\boxed{\frak{\pink{10\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Radius\;of\;cone\;is\; \bf{10\;cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\qquad\boxed{\underline{\underline{\purple{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:CSA = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA\\{\quad\:\:\:\qquad=\pi r^2+\pi rl}\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\end{minipage}}

Similar questions