Math, asked by lathalatha01099, 11 months ago

the height of parallelogram is one third of it's base . if the area of the parallelogram is 192cm. find the height and base​ (4 marks)

Answers

Answered by Anonymous
21

Given :

  • The height of parallelogram is one third of it's base.
  • Area of the parallelogram is 192 cm²

To Find :

  • Base of the parallelogram.
  • Height of the parallelogram.

Solution :

Let the base of the parallelogram be x cm.

Let the height of the parallelogram be y cm.

Case 1 :

The height of the parallelogram is of the base.

Equation :

\implies \sf{height\:=\:\dfrac{1}{3}\:\times\:base}

\implies \sf{y=\dfrac{1}{3}\:\times\:x}

\implies \sf{y=\dfrac{x}{3}\:\:\:\:(1)}

Case 2 :

The area of the parallelogram is 192 cm².

Formula :

\large{\boxed{\tt{Area_{parallelogram}\:=\:base\:\times\:height}}}

Equation :

\implies \sf{192\:=\:\:base\:\times\:height}

\implies \sf{192\:=\:x\:\times\:y}

\implies \sf{192\:=\:x\:\times\:\dfrac{x}{3}} \bold{\big[From\:equation\:(1)\:y\:=\:\dfrac{x}{3}\big]}

\implies \sf{192\:=\:\dfrac{x^2}{3}}

\implies \sf{192\:\times\:3\:=\:x^2}

\implies \sf{576=x^2}

\implies \sf{\sqrt{576}\:=\:x}

\implies \sf{24=x}

Substitute, x = 24 in equation (1),

\implies \sf{y=\dfrac{x}{3}}

\implies \sf{y=\dfrac{24}{3}}

\implies \sf{y=8}

\large{\boxed{\tt{\purple{Base\:of\:parallelogram\:=\:x\:=\:24\:cm}}}}

\large{\boxed{\tt{\purple{Height\:of\:parallelogram\:=\:y\:=\:8\:cm}}}}

Answered by StarrySoul
21

Given :

• The Height of parallelogram is ⅓ of it's base.

• Area of parallelogram is 192 cm²

To Find :

• Height of the parallelogram

• Base of the parallelogram

Solution :

Let the base of parallelogram be x. Given height is ⅓ of base

 \sf \mapsto \: Height =  \dfrac{1}{3}  \: of \: x

 \sf \longrightarrow\: Height =  \dfrac{x}{3}

Let's Find Base from the given Area and Height

We know that,

  \bigstar\boxed{ \sf \: Area  \: of \:  parallelogram  =  \: Base  \times Height }

 \longrightarrow \sf \: 192 = x \times  \dfrac{x}{3}

 \longrightarrow \sf \: 192  =  \dfrac{ {x}^{2} }{3}

 \longrightarrow \sf \:  {x}^{2}  = 192 \times 3

 \longrightarrow \sf \:  {x}^{2}  = 576

 \longrightarrow \sf \:  {x}  =  \sqrt{576}

 \longrightarrow \sf \:  {x}  =  \sqrt{24 \times 24}

 \longrightarrow \sf \red{  {x}  =  24 \: cm \: }

Hence :

 \dag \sf  \: Base \:  of \: parallelogram = x = \boxed{ \purple{  \sf \: 24 \: cm} }

 \dag \sf  \:  Height \:  of \:  parallelogram =  \dfrac{x}{3} = \dfrac{24}{3}  =  \boxed{ \purple{  \sf \: 8\: cm} }

Similar questions