The height of the equilateral triangle is 10cm.Its area is
Answers
Answered by
0
Answer:
Let each side be a cm, then
\begin{aligned}
\left(\frac{a}{2}\right)^2+{10}^2 = a^2 \\
<=>\left(a^2-\frac{a^2}{4}\right) = 100 \\
<=> \frac{3a^2}{4} = 100 \\
a^2 = \frac{400}{3} \\
Area = \frac{\sqrt{3}}{4}*a^2 \\
= \left(\frac{\sqrt{3}}{4}*\frac{400}{3}\right)cm^2 \\
= \frac{100}{\sqrt{3}}cm^2
\end{aligned}
Answered by
1
Answer:
100/√3cm^2
Explanation:
let each side be a cm
Then,
(a/b)^2+(10)^2=a^2
[a^2-(a^2/4)]=100
3a^2/4=100
a^2=400/3
Area=(√3/4)a^2
=[(√3/4)(100/3)]cm^2
=110/√3cm^2
Similar questions