Physics, asked by adityacrazy6806, 10 months ago

The height of the point vertically above the earth surface at which acceleration due to the garvity becomes 1 % of that value at the surface

Answers

Answered by nirman95
71

Answer:

To find:

Height at which gravity acceleration becomes 1% to the value at the surface.

Formulas used:

Let height be h, radius of Earth be r, then gravity at height h is given as:

g" =  \frac{g}{ {(1 +  \frac{h}{r}) }^{2} }  \\

Calculation:

As per the question, g" = (1/100) g

 \frac{1}{100} g=  \frac{g}{ {(1 +  \frac{h}{r}) }^{2} }  \\

 =  >  \frac{1}{100}  =  \frac{1}{ ({1 +  \frac{h}{r} )}^{2} }  \\

 =  > 1 +  \frac{h}{r}  =  \sqrt{100}  \\

 =  > 1 +  \frac{h}{r}  = 10 \\

 =  >  \frac{h}{r}  = 9 \\

 =  > h = 9r

As per data , radius of Earth is 6400 km.

So, height = 9 × 6400 = 57600 km

 \boxed{ \boxed{height = 57600 \: km}}

Answered by EliteSoul
49

Answer:

{\boxed{\bold\green{Height =57600\:km}}}

Explanation:

Given:-

Gravity becomes 1% of the value at the surface.

Let the new gravity be g".

Formula used:-

{\boxed{\bold\purple{g" =\frac{g}{{(1+\frac{h}{r})}^{2}}}}}

{\boxed{\bold\green{r = 6400\:km}}}

\rightarrow\sf \frac{1}{100}\:g = \frac{g}{{(1+\frac{h}{r})}^{2}}

\rightarrow\sf  \frac{g}{100} =\frac{g}{{(1+ \frac{h}{r})}^{2}}

\rightarrow\sf \frac{ 1}{100} = \frac{1}{{(1+\frac{h}{r})}^{2}}

\rightarrow\sf 100 = {(1+\frac{h}{r})}^{2}

\rightarrow\sf 1 + \frac{h}{r} = \sqrt{100}

\rightarrow\sf 1 + \frac{h}{r} = 10

\rightarrow\sf \frac{h}{r} = 10 - 1

\rightarrow\sf \frac{h}{r} = 9

\rightarrow\sf h = 9r

\rightarrow\sf h =( 9\times 6400) \:km \: \: \: [\because r = 6400\:km ]\\\\\rightarrow{\boxed{\bold\purple{h = 57600\:km}}}

\therefore\bold{\underline{Height = 57600\:km}}

Similar questions