Math, asked by amishafilomeena1003, 3 days ago

The height of the solid cone is 12cm and the area of the base is 81 π sqcm , find the
curved surface area of the cone.[Takeπ =3.14]

Answers

Answered by mathdude500
32

\large\underline{\sf{Solution-}}

Given that,

  • Height of cone, h = 12 cm

  • Area of base = 81 π sq. cm.

Let assume that

  • Radius of cone = r cm

  • Slant height of cone = l cm

Now, as it is given that

\rm \: Area \: of \: base \: of \: cone \:  =  \: 81\pi \\

\rm \: \pi {r}^{2} \:  =  \: 81\pi \\

\rm \: {r}^{2} \:  =  \: 81 \\

\rm \: {r}^{2} \:  =  \:  {9}^{2}  \\

\rm\implies \:r \:  =  \: 9 \: cm \\

Now, we know slant height of a cone, l is evaluated as

 {l}^{2}  \:  =  \:  {r}^{2} +  {h}^{2}  \\

 {l}^{2}  \:  =  \:  {9}^{2} +  {12}^{2}  \\

 {l}^{2}  \:  =  \:  81 + 144  \\

 {l}^{2}  \:  =  \:  225  \\

 {l}^{2}  \:  =  \:   {15}^{2}   \\

\implies \:l \:  =  \: 15 \: cm \\

Now, we know

\rm \: Curved \: Surface \: Area \: of \: cone \:  \\

\rm \:  =  \: \pi \: r \: l \\

\rm \:  =  \: 3.14 \times 9 \times 15 \\

\rm \:  =  \: 423.9 \:  {cm}^{2}  \\

Hence,

\rm\implies \:Curved \: Surface \: Area \: of \: cone=423.9 \:{cm}^{2}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by kvalli8519
22

refer the given attachment

Attachments:
Similar questions