Math, asked by dhandayush55, 9 months ago

The heights of 10 males of a given locality are found to be 70,67,62,68,61,68,70,64,64,66 inches. Is it reasonable to believe that the average height is greater than 64 inches Test at 5%.​

Answers

Answered by mad210203
15

Given:

Given that, height of 10 males are found to be 70, 67, 62, 68, 61, 68, 70, 64, 64, 66 inches.

To find:

We need to find the average height is greater than 64 inches.

Solution:

Let us first try to find the idea so that we can confidently reach to a solution.

x = \frac{\sum x_i}{n} = \frac{660}{10} = 66.

x = 66

x_{i}                

70                  4                  16

67                   1                   1

62                 -4                  16

68                  2                   4

61                  -5                  25

68                  2                   4

70                  4                   16

64                 -2                   4

64                 -2                   4

66                 0                    0

Now let's write all the given and derived values:

\sum x_{i}   = 660

\sum ( x_{i} - x )^2 = 90

S^2 = \frac{\sum (x_i - x)^2}{n-1} = \frac{90}{9} = 10

S = \sqrt{10 } = 3.16

\mu = 64

Let H_0 = The average height is equal to 64 inches

H_1 = Average height is more than 64 inches

t = \frac{x- \mu}{S/\sqrt{n} } with the degree n-1 of freedom

t = \frac{66 - 64}{3.16/ \sqrt{10} } = \frac{2}{1}

t = 2

The critical value for for a right tailed test at 5% level of significance with degrees of freedom is 1.833.

Calculated value = 2 and Tabulated value = 1.833

If |Calculated value| \leq Tabular value then  H_0 is accepted, otherwise rejected.

Now,

But |2| > 1.83

H_0 is rejected

So, the average height is greater than 64 inches.

Answered by sagivarma2009
0

Answer:

answer is

Step-by-step explanation:

☝️☝️☝️

☝️☝️☝️☝️

☝️☝️☝️☝️☝️☝️

Similar questions