Math, asked by thaththai2006, 6 months ago

The heights of two cones are in the ratio 3:2 and their radii are in the ratio 2:7.

Find the ratio of their volume.​

Answers

Answered by prince5132
58

GIVEN :-

  • Ratio of Height of cone = 3:2.
  • Ratio of Radii of cone = 2:7.

TO FIND :-

  • The ratio of volume.

SOLUTION :-

Let the ratio constant be "x".

Let the volume of first cone be "v" and the volume of second cone be "v'".

 \\  \underline{  \bigstar \:  \textsf{According to  the Question}} \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  =  \frac{\pi r ^{2}  \dfrac{h}{3} }{\pi r'^{2}  \dfrac{h'}{3} }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  =  \frac{\pi  \times (2x) ^{2}  \times  \dfrac{3x}{3}  }{\pi \times (7x) ^{2} \times  \dfrac{2x}{3}  }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  = \frac{ 4x^{2}  \times  \dfrac{3x}{3}  }{ 49x^{2} \times  \dfrac{2x}{3}  }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  = \frac{ 4  \times  \dfrac{3x}{3}  }{ 49 \times  \dfrac{2x}{3}  }  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  = 4 \times  \frac{3x}{3}  \times  \frac{1}{49}  \times  \frac{3}{2x}  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  = 4 \times  3x \times  \frac{1}{49}  \times  \frac{1}{2x}  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  =  \frac{12x}{98x}  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  =  \frac{12}{98}  \\  \\  \\

:   \implies \displaystyle \sf \:  \frac{v}{v'}  =  \frac{6}{49}  \\  \\  \\

:   \implies  \underline{ \boxed{\displaystyle \sf \:  {v}:{v'}   = 6:49}}

Answered by mathsRSP
17

Let r1 and r2 be cone radius and similarly h1 and h2 be heights.

r1/r2= 2/3, i.e r1= 2/3*r2

Similarly,

h1= 3/2h1.

Apply them into formula of volume of cone and find the answer.(solve it using pen and paper you will see)

Answer should be- V1/V2= 2/3.

Similar questions