Chemistry, asked by omkargangurde, 9 months ago

The henry law constant for the solubility of N2 gas
in water at 298K is 1.0 x 100000 atm.Then calculate
number of moles of N2 from air dissolved in 10
moles of water at 298K and 5atm pressure?​

Answers

Answered by Anonymous
13

GiveN :

  • Total Pressure \sf{(P_T) \: = \: 5 \: atm}
  • Mole fraction of \sf{N_2 \: = \: 0.8}
  • Henry's Constant \sf{K_H \: = \: 10^5}

To FinD :

  • Number of moles of Nitrogen

SolutioN :

As we know that :

\footnotesize\dashrightarrow \boxed{\tt{Partial \: Pressure \: = \: Total \: Pressure \: \times \: Mole \: fraction}} \\ \\ \dashrightarrow \tt{Pressure_P \: = \: 0.8 \: \times \: 5} \\ \\ \dashrightarrow \tt{Pressure_P \: = \: 0.4 \: atm} \\ \\ \underline{\sf{\therefore \: Partial \: Pressure \: is \: 0.4 \: atm}}

\rule{150}{0.5}

Now, use Henry's Law :

\dashrightarrow \boxed{\tt{Pressure_P \: = \: K_H X}} \\ \\ \dashrightarrow \tt{X \: = \: \dfrac{Pressure_P}{K_H}} \\ \\ \footnotesize \underline{\sf{ \: \: \: \: \: \: \: Where, \: X \: is \: Mole \: Fraction \: And  \: X \: = \: \dfrac{n}{10} \: \: \: \: \: \: \:}} \\ \\ \dashrightarrow \tt{\dfrac{n}{10} \: = \: \dfrac{4}{10^5}} \\ \\ \dashrightarrow \tt{\dfrac{n}{10} \: = \: 4 \: \times \: 10^{-5}} \\ \\ \dashrightarrow \tt{n \: = \: 4 \: \times \: 10^{-5} \: \times \: 10^1} \\ \\ \dashrightarrow \tt{n \: = \: 4 \: \times \: 10^{-4} \: moles} \\ \\ \underline{\sf{\therefore \: No. \: of \: moles \: of \: N_2 \: are \: 4 \: \times \: 10^{-4} \: moles}}

Similar questions