Math, asked by qwertydewy, 9 months ago

the highest exponent of 24 in 20! is​


amitnrw: 6 is the answer

Answers

Answered by pulakmath007
45

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. The highest exponent of the prime number p in n! is

 =  \displaystyle  \sf{\sum\limits_{k=1}^{m}   \:  \: \frac{n}{ {p}^{k} }  \: }

\sf{\: where \: k \: is \: the \: smallest \: integer \: such \: that \:   \:  {p}^{k +1} > n}

2. BOX FUNCTION :

 \sf{ \: [ x ]  =  the \:  greatest \:  integer \:  but  \: not \:  greater \:  than \:  x }

TO DETERMINE

The highest exponent of 24 in 20!

CALCULATION

Here

24 = 2 \times 2 \times 2 \times 3 =  {2}^{3}  \times 3

So in the prime factorisation of 24 only two prime numbers 2 & 3 are present

So we will proceed to find the power of 2 & 3 in 20!

Now  \sf{ \: {2}^{5}   > 20 \: }

So the largest power of the prime number in 20! is

  =  \displaystyle \:  \sf{\bigg[\:   \frac{20}{2}  \bigg]} + \:  \sf{\bigg[\:    \frac{20}{ {2}^{2} } \bigg]} + \:  \sf{\bigg[\:   \frac{20}{ {2}^{3} }  \bigg]} + \:  \sf{\bigg[\:   \frac{20}{ {2}^{4} }  \bigg]}

  =  \displaystyle \:  \sf{\bigg[\:   \frac{20}{2}  \bigg]} + \:  \sf{\bigg[\:    \frac{20}{ 4 } \bigg]} + \:  \sf{\bigg[\:   \frac{20}{ 8 }  \bigg]} + \:  \sf{\bigg[\:   \frac{20}{ 16 }  \bigg]}

  =  \displaystyle \sf{10 + 5 + 2 + 1}

  =  \displaystyle \sf{18}

 \sf{ \: Again \:   \: {3}^{3}  > 20}

So the largest power of the prime number in 20! is

  =  \displaystyle \:  \sf{\bigg[\:   \frac{20}{3}  \bigg]} + \:  \sf{\bigg[\:    \frac{20}{ {3}^{2} } \bigg]}

  =  \displaystyle \:  \sf{\bigg[\:   \frac{20}{3}  \bigg]} + \:  \sf{\bigg[\:    \frac{20}{9} \bigg]}

  =  \displaystyle \:  \sf{6 + 2}

  =  \displaystyle \:  \sf{8}

Hence the highest exponent of 24 in 20! is

= min ( 18/3, 8)

= min ( 6, 8 )

= 6

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

prove that n^3-n is divisible by 3 for every positive integer

https://brainly.in/question/13431230

Similar questions