Physics, asked by duttasandipan21, 8 months ago

The hinge of a door is at a distance of 25 cm from the point of application of
force How much force must be applied so that it produces the moment of force of 4Nm

Answers

Answered by TheJagirdaR
6

Answer:

Moment of force is also called Torque. As an idea, it is the turning effect to a force.

By definition,

Torque (about a point) = magnitude of force X perpendicular distance (of this point) from the point of application of force.

Putting the given values here,

4 = F X 0.25 (in SI units)

=> F = 16 N

Hope it helps.

Enjoy !

Answered by brainly10038
3

Explanation:

⇝Given :-</p><p></p><p>Distance =25cm</p><p></p><p>Momentum = 5nm</p><p></p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃</p><p></p><p>⇝To Find :-</p><p></p><p>Force = ?</p><p></p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃</p><p></p><p>⇝Formula Used :-</p><p></p><p>{\red{\bigstar \: \: {\orange{\underbrace{\underline{\green{\bf{Force = \frac{momentum}{distance} }}}}}}}}★Force=distancemomentum</p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃</p><p></p><p>⇝Solution :-</p><p></p><p>❒ Here :</p><p></p><p>Force = ?</p><p>Momentum = 4nm</p><p>Distance = 25cm</p><p></p><p>❒ Solving Starts :</p><p></p><p>{:{\twoheadrightarrow{\bf \: \: \: \: \: \: \: \: \: \: \: {Force = \frac{momentum}{distance} }}}}:↠Force=distancemomentum</p><p>{:{\twoheadrightarrow{\bf \: \: \: \: \: \: \: \: \: \: \: {Force = \frac{4 \times{\cancel {100}}}{\cancel{25}} }}}}:↠Force=254×100</p><p>{:{\twoheadrightarrow{\bf \: \: \: \: \: \: \: \: \: \: \: {Force = 4 \times 4 }}}}:↠Force=4×4</p><p>{\large{\purple{:{\longmapsto{\underline{\boxed{\bf{Force = 16 N}}}}}}}}:⟼Force=16N</p><p></p><p>❒ Therefore :</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\large{\purple{\underline{\red{\underline{\pink{\pmb{\mathfrak{Force = 16 N}}}}}}}}}Force=16NForce=16N</p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃</p><p></p><p>❒ More Info :</p><p></p><p>✏3 Laws of motion :</p><p></p><p>\begin{gathered}\begin{gathered}\red{\large \qquad \boxed{\boxed{\begin{array}{cc} \ ➳ \: \: \bf v = u + at \\ \\ \ ➳ \: \: \bf s = ut + \dfrac{1}{2}a {t}^{2} \\ \\ \ ➳ \: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}}\end{gathered}\end{gathered} ➳v=u+at ➳s=ut+21at2 ➳v2−u2=2as</p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃</p><p>

Similar questions