Physics, asked by brainly10038, 1 month ago

The hinge of a door is at a distance of 25cm from the point of application of force. How much force must be applied so that it produces the moment of force of 4nm?

Answer must be in latex. ​

Answers

Answered by Anonymous
51

Given :-

  • Distance =25cm
  • Momentum = 5nm

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Force = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Formula Used :-

{\red{\bigstar \:  \: {\orange{\underbrace{\underline{\green{\bf{Force =  \frac{momentum}{distance}   }}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

Here :

Force = ?

Momentum = 4nm

Distance = 25cm

Solving Starts :

{:{\twoheadrightarrow{\bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {Force = \frac{momentum}{distance}  }}}}

{:{\twoheadrightarrow{\bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {Force = \frac{4 \times{\cancel {100}}}{\cancel{25}}  }}}}

{:{\twoheadrightarrow{\bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {Force = 4 \times 4  }}}}

{\large{\purple{:{\longmapsto{\underline{\boxed{\bf{Force = 16 N}}}}}}}}

Therefore :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{\purple{\underline{\red{\underline{\pink{\pmb{\mathfrak{Force = 16 N}}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

More Info :

3 Laws of motion :

\begin{gathered}\red{\large \qquad \boxed{\boxed{\begin{array}{cc} \ ➳ \: \: \bf v = u + at \\ \\ \ ➳ \: \: \bf s = ut + \dfrac{1}{2}a {t}^{2} \\ \\ \ ➳ \: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}}\end{gathered}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by IIMrVelvetII
15

GIVEN :-

  • Distance = 25 cm
  • Momentum = 4 nm

TO FIND :-

  • Force

SOLUTION :-

We know that,

 \sf \red \star \fbox \blue{Force =  \frac{Momentum}{Distance}}

 \sf {{{→Force = \frac{4 \times{\cancel {100}}}{\cancel{25}}}}}

 \sf {→Force = 4 × 4}

 \sf \fbox \orange{→Force \: = \: 16N}

 \therefore 16N of force must be applied so that it produces the moment of force of 4nm.

KNOW MORE :-

3 Laws of motion :-

\sf →\green{v = u +  {at}^{2}}

\sf →\red{s = ut +  \frac{1}{2} {at}^{2}}

\sf →\orange{{v}^{2} -  {u}^{2} = 2as}

Similar questions