Physics, asked by chhayas860, 1 year ago

The horizontal range of a projectile fired at an angle of 15 degree is 50 m .If it is fired at the same speed at an angle of 45 degree.It range will be

Answers

Answered by MoonlightDolls
131

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf R_2=100m}}

\huge\underline\blue{\sf Solution:}

\large\underline{\underline{\sf Given:}}

  • Horizontal Range (\sf{R_1})=50m

  • Angle of projection (\sf{\theta_1})=15°

  • Angle of projection (\sf{\theta_2}=45°

\large\underline{\underline{\sf To\:Find:}}

  • New Range (\sf{R_2})=?

_______________________________________

\huge\underline{\underline{\sf Range(R_1):}}

\large{\boxed{\sf R_1=\frac{u^2sin2\theta_1}{g}}}

\large\implies{\sf 50=\frac{u^2sin2×15°}{10}}

\large\implies{\sf 50=\frac{u^2×sin30°}{10} }

\large\implies{\sf 50=\frac{u^2×1}{10×2}}

\large\implies{\sf u^2=50×10×2}

\large\implies{\sf u^2=500×2}

\large\implies{\sf u^2=1000m/s}

According to Question next projectile is fired with the same Velocity therefore Velocity (u) will be :-

\sf{u^2=1000m/s} for next projectile .

Now for next projection :

\huge\underline{\underline{\sf Range(R_2):}}

\large{\boxed{\sf R_2=\frac{u^2×sin2\theta_2}{g} }}

\large\implies{\sf R_2=\frac{1000×sin2×45°}{10} }

\large\implies{\sf R_2=\frac{1000×sin90°}{10} }

\large\implies{\sf R_2=\frac{1000×1}{10} }

\large\implies{\sf R_2=100m}

\large\red{\boxed{\sf R_2=100m}}

Hence ,

Range (\sf{R_2}) for new projectile is 100m

\large{♡}MᴏᴏɴʟɪɢʜᴛDᴏʟʟs\large{♡}

Similar questions