Physics, asked by galadhy841, 4 months ago

The horizontal range of a projectile fired at an angle of 15° is 50m. If it fired with the same speed at angle of 45°, It's range is ?​

Answers

Answered by Anonymous
11

{\underline{\sf{\purple{Given}}}:-} \\

\:\:\:\:\bullet\:\:\:\:\sf{ The \ horizontal \ range \ of \ a \  projectile \ fired \ at \ an \ angle \ of \ 15^{\circ} \ is \ 50m.}

\\

{\underline{\sf{\purple{ToFind}}}:-} \\

\:\:\:\:\bullet\:\:\:\:\sf{If \ it \ fired \ with \ the \ same \ speed \ at \  angle \ of \ 45^{\circ}, \ It's \ range \ is \ \?}

\\

{\underline{\sf{\purple{Solution}}}:-} \\

We know,

\:\:\:\bullet\:\:\sf{Range\:(R)=\dfrac{u^{2}sin2\theta}{g}}

\:\:\:\bullet\:\:\sf{\theta = Angle \: of \: projection}

\:\:\:\bullet\:\:\sf{\theta = 15^{\circ}}

\:\:\:\bullet\:\:\sf{R = 50m}

\\

Putting the values in the range formula

\\\dashrightarrow\:\sf{R=50m=\dfrac{u^{2}sin(2\times15^{\circ})}{g}}

\\

\dashrightarrow\:\sf{50\times g = u^{2}sin30^{\circ}=u^{2}\dfrac{1}{2}}

\\

\dashrightarrow\:\sf{50\times g \times 2 = u^{2}}

\\

\dashrightarrow\:\sf{u^{2} = 50\times9.8\times2=100\times9.8=980}

\\

\dashrightarrow\:\sf{u = \sqrt{980} = \sqrt{49\times 20}=7\times 2\sqrt{5}m/s}

\\

\dashrightarrow\:\sf{=14\times 22.23m/s = 31.304m/s}

\\

For θ = 45° ;

\\\dashrightarrow\:\sf{R = \dfrac{u^{2}sin2\times 45^{\circ}}{g} = \dfrac{u^{2}}{g}}

\\

\dashrightarrow\:\sf{R = \dfrac{(14\sqrt{5})^{2}}{g} = \dfrac{14\times14\times5}{9.8}}

\\

\dashrightarrow\:{\boxed{\sf{\red{100m}}}}

Answered by Anonymous
17

\begin{gathered}\begin{gathered}\sf Given -  \begin{cases} &\sf Horizontal \:Range\:(R_1)\:= \frak{50\:m}\\ & \sf  Angle \:of \:projection \:theta_1\:=\:\frak{15°}\\ & \sf Angle \:of\: projection\:theta_2\:=\:\frak{45°}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf To \:  Find -   \begin{cases} &\sf New\:Range\:(R_2) \end{cases}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

  • Here,It is given that the horizontal range of a projectile fired at an angle of 15° is 50 m. So,the horizontal range of a projectile is defined as the horizontal displacement. Mathematically, it can be written as :-

\large\pink{\boxed{\sf R=\frac{u^2sin2\theta}{g}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Now, according to the first condition we have to find initial speed of the projectile. Where, we know the value of g ( 9.8 meter per second square) . So, the formula will be :-

\purple{\boxed{\sf R_1=\frac{u^2sin2\theta_1}{g}}}

❍Now, Substitute the given values :-

\:\:\: \:\:\:\:\: :\implies{\sf 50=\dfrac{u^2sin2×15°}{9.8}}\\

\: \:\: \:\: \:\:\: :\implies{\sf 50=\dfrac{u^2×sin30°}{9.8} }\\

\:\:\: \:\: \:\: \: :\implies{\sf u^2=50×9.8×2}\\

\:\:\: \:\: \:\: \: :\implies{\sf u^2=980m/s}

\:\:\: \:\:\:\:\::\implies{\underline{\boxed{\frak{\purple{u= 31.30\;m/s}}}}}\;\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Again, according to the second condition, if it is fired with same speed at an angle of 45°. Its range will be :-

\red{\boxed{\sf R_2=\frac{u^2sin2\theta_2}{g}}}\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{(31.30)^2×sin2×45°}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{980×sin90°}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\sf R_2=\dfrac{980×1}{9.8} }\\

\:\:\: \:\:\:\:\::\implies{\underline{\boxed{\frak{\red{R_2= 100\;m}}}}}\;\bigstar\\\\

\therefore{\underline{\sf{Hence, \;the\;new\; range \;is\;\bf{ 100\;m}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions