Math, asked by elinorandrea7, 17 hours ago

The houses in a row are numbered consecutively from 1 to 49. Show that there exists a value of x such that sum of numbers of houses preceeding the house numbered x is equal to sum of the numbers of houses following x. Find value of x.
Please elaborate all steps.

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given that, the houses are numbered consecutively from 1 to 49.

Now, we have to find a value of x such that sum of numbers of houses preceeding the house numbered x is equal to sum of the numbers of houses following x.

So, it means, we have to find the value of x such that

\rm \: 1+2+3 +\cdots+(x - 1) = (x + 1) + (x + 2) + \cdots + 49 \\

Now, Consider

\rm \: 1+2+3 +\cdots+(x - 1) \\

We know,

\boxed{ \rm{ \:1 + 2 + 3 + \cdots + n =  \frac{n(n + 1)}{2} \: }} \\

So, using this, we get

\rm \:  =  \: \dfrac{(x - 1)(x - 1 +  1)}{2}  \\

\rm \:  =  \: \dfrac{x(x - 1)}{2}  \\

So,

\boxed{ \rm{ \:1 + 2 + 3 + \cdots + (x - 1)  =  \: \dfrac{x(x - 1)}{2}}} -  -  - (1) \\

Now, Consider

\rm \: (x + 1) + (x + 2) + \cdots + 49 \\

can be rewritten as

\rm \: =  (1 + 2 + 3 + \cdots + 49) - (1 + 2 + 3 + \cdots + x) \\

\rm \:  =  \: \dfrac{49(49 + 1)}{2}  - \dfrac{x(x  + 1)}{2} \\

\rm \:  =  \: \dfrac{49 \times 50 - x(x + 1)}{2} \\

\rm \:  =  \: \dfrac{49 \times 50 -  {x}^{2} -  x}{2} \\

So,

\boxed{ \rm{ \:(x + 1) + (x + 2) + \cdots + 49 = \dfrac{49 \times 50 -  {x}^{2} - x}{2}}} -  -  - (2) \\

So, Consider again

\rm \: 1+2+3 +\cdots+(x - 1) = (x + 1) + (x + 2) + \cdots + 49 \\

\rm \: \dfrac{x(x - 1)}{2}  = \dfrac{49 \times 50 -{x}^{2} -  x }{2}  \\

\rm \: \dfrac{ {x}^{2}  - x}{2}  = \dfrac{49 \times 50 -{x}^{2} -  x }{2}  \\

\rm \:  {x}^{2} - x = 49 \times 50 -  {x}^{2} - x \\

\rm \:  {x}^{2} = 49\times 50 -  {x}^{2} \\

\rm \:  2{x}^{2} = 49 \times 50  \\

\rm \:  {x}^{2} = 49 \times 25  \\

\rm\implies \:x = 7 \times 5 = 35 \\

So, there exist a house number x = 35, such that sum of numbers of houses preceeding the house numbered 35 is equal to sum of the numbers of houses following 35

\rule{190pt}{2pt}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.
Answered by talpadadilip417
24

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

Solution :-

Sum of the numbers of houses preceding the house numbered

\rm X=1+2+3+\ldots+(X-1)

 \[ \begin{array}{l} \displaystyle\rm  =\frac{(X-1)}{2}[2 \times 1+(X-1-1)]  \\ \\\displaystyle\rm =\frac{X(X-1)}{2} \end{array} \]

Sum of the numbers of houses following the house numbered

\rm X=(X+1)+(X+2)+(X+3)+\ldots  +49

Using the formula, we get

 \text{Sum of n terms, \( \rm S_{n}=\dfrac{n}{2}(a+l) \)}

(Here, a is the first term and l is the last term of an AP.)

\[ \begin{array}{l}   \displaystyle\rm=\frac{(49-X)}{2}[49+(X+1)] \\ \\ \displaystyle\rm=\frac{(49-X)(50+X)}{2} \end{array} \]

Sum of the numbers of houses following the house numbered X= Sum of the numbers of houses preceding the house numbered X

\[ \begin{array}{l}   \displaystyle\rm  \Rightarrow \frac{(49-X)(50+X)}{2}=\frac{X(X-1)}{2} \\\\  \displaystyle\rm \Rightarrow(49-X)(50+X)=X(X-1) \\\\  \displaystyle\rm \Rightarrow 2450+49 X-50 X-X^{2}=X^{2}-X \\\\  \displaystyle\rm \Rightarrow 2 X^{2}=2,450 \\ \\  \displaystyle\rm\Rightarrow X^{2}=1,225 \\ \\  \fcolorbox{red}{indigo}{\color{cyan}  \displaystyle\rm★ \:  \: ⇒  X=35 \:  \: ★} \end{array} \]

Hence, at X=35, the sum of numbers of houses preceding the house numbered X is equal to sum of the numbers of houses following X.

Similar questions