Math, asked by rajveer9699, 1 year ago

The hyperbola has its conjugate axis 5 and passes through the point (2, –1). the length of a latus-rectum is

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=1.25\sqrt{29}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Conjugate \: axis = 5} \\ \\ \tt{:\implies Point\:of\:hyperbola=(2,-1)}  \\ \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Conjugate \: axis = 2b} \\  \\ \tt{:  \implies 5= 2b} \\  \\   \green{\tt{: \implies b =  \frac{5}{2} }} \\  \\  \bold{Eqn \: of \: standard \: hyperbola} \\  \tt{:  \implies  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1 } \\  \\  \text{Putting \: value \: of \: b} \\  \tt{: \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {( \frac{5}{2} })^{2} }  = 1} \\  \\  \tt{: \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ 4{y}^{2} }{25}  = 1} \\  \\  \text{(2, - 1) \: satisfy \: on \: this \: eqn} \\  \tt{: \implies  \frac{ {2}^{2} }{ {a}^{2} }  -  \frac{4 {( - 1)}^{2} }{25}  = 1} \\  \\  \tt{:  \implies  \frac{4}{ {a}^{2} }  -  \frac{4}{25}  = 1} \\  \\  \tt{:  \implies  \frac{4}{ {a}^{2} }  = 1 +  \frac{4}{25} } \\  \\  \tt{: \implies  \frac{4}{ {a}^{2} }  =  \frac{29}{25} } \\  \\  \tt{:  \implies 29 {a}^{2}  = 100} \\  \\  \tt{: \implies  {a}^{2}  =  \frac{100}{29} } \\  \\ \bold{As \: we \: know \: that} \\  \tt{:  \implies latus \: rectum =  \frac{2 {b}^{2} }{a} } \\  \\ \tt{:  \implies latus \: rectum =  \frac{2  \times  \frac{25}{4}  }{ \frac{10}{ \sqrt{29} } } }  \\  \\  \green{\tt{:  \implies latus \: rectum = 1.25 \sqrt{29}} }

Similar questions