Math, asked by adityapandey6868, 11 months ago

The hypotenuse of a right angle triangle is 25 cm and perimeter is 56 cm.find the smallest side using quadratic fromula

Answers

Answered by BrainlyConqueror0901
61

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Smallest\:side=7\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Hypotenuse = 25 \: cm \\  \\  \tt:  \implies Perimeter \: of \: triangle = 56 \: cm \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt :  \implies Smallest \: side = ?

• According to given question :

 \circ \:  \text{Let \: Base \: be \: x} \\  \\   \circ \:  \text{Perpendicular \: be \: y} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Perimeter \: of \: triangle = a + b + c \\  \\ \tt:  \implies 56 = 25 + x + y \\  \\ \tt:  \implies x + y = 56 - 25 \\  \\ \tt:  \implies x + y = 31 \\  \\ \tt:  \implies y = 31 - x \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  \tt:  \implies  {25}^{2}  =  {y}^{2}  +  {x}^{2}  \\  \\ \tt:  \implies 625 =  {(31 - x)}^{2}  +  {x}^{2}  \\  \\ \tt:  \implies 625 = 961 +  {x}^{2}  - 62x +  {x}^{2}  \\  \\ \tt:  \implies 2 {x}^{2}  - 62x +  961 - 625 = 0 \\  \\ \tt:  \implies  {x}^{2}  - 31x  + 168 = 0 \\  \\ \tt:  \implies  {x}^{2}  - 24x - 7x + 168 = 0 \\  \\ \tt:  \implies x(x - 24) - 7(x - 24) = 0 \\  \\ \tt:  \implies (x - 7)(x - 24) = 0 \\  \\  \green{\tt:  \implies x = 7 \: and \: 24} \\  \\    \green{\circ\:\tt Base = 7 \: cm }\\  \\    \green{\circ\:\tt  Perpendicular = 31 - 7 = 24 \: cm} \\  \\    \green{\circ\:\tt Base = 24 \: cm} \\  \\    \green{\circ\:\tt Perpendicular = 31 - 24 = 7 \: cm} \\  \\   \green{ \tt\therefore Smallest \: side \: length \: is \: 7 \: cm}

Answered by Anonymous
38

  \huge \mathtt{ \fbox{Solution :)}}

Given ,

  • Hypotenuse of the triangle = 25 cm
  • Perimeter of the triangle = 56 cm

Let ,

  • Base and perpendicular of the triangle be x and y

We know that , perimeter of the triangle is given by

 \large \mathtt{ \fbox{Perimeter = A + B + C}}

Thus ,

56 = 25 + x + y

x + y = 31

x = 31 - y

And the square of the longest side of triangle is

 \large \mathtt{ \fbox{ {(h)}^{2}  =  {(b)}^{2}  +  {(p)}^{2} }}

Thus ,

 \sf \hookrightarrow {(25)}^{2}  =  {(x)}^{2}  +   {(31 - x)}^{2}  \\  \\  \sf \hookrightarrow </p><p>625 =  {(x)}^{2}  +  {(31)}^{2} +  {(x)}^{2}  - 2 × 31x  \\  \\  \sf \hookrightarrow </p><p>625 = 961 +2 {(x)}^{2} - 62x \\  \\  \sf \hookrightarrow </p><p>2 {(x)}^{2}  - 62x+ 336 = 0 \\  \\  \sf \hookrightarrow </p><p> {(x)}^{2} - 31x + 168 = 0 \\  \\  \sf \hookrightarrow </p><p>x(x - 24) - 7(x - 24) \\  \\  \sf \hookrightarrow </p><p>(x - 7)(x - 24) \\  \\  \sf \hookrightarrow </p><p>x = 7 \: \:  cm \:  or \:  x = 24 \:  \: cm

Hence , The smallest side of the triangle is 7 cm or 24 cm

_____________ Keep Smiling ☺

Similar questions