Math, asked by nisha790, 1 year ago

The hypotenuse of a right angled isosceles triangle is 16 root 2 find the area​

Answers

Answered by Anonymous
5

let others two sides be x units

By pathagorus Theorem

 {x}^{2}  +  {x}^{2}  =   {(16 \sqrt{2}) }^{2}    \\  \\   \sqrt{2 {x}^{2} }  = 16 \sqrt{2}  \\  \\ x \sqrt{2}  = 16 \sqrt{2}  \\  \\ x = 16 \\  \\

Area of ∆ = 1/2 × b × h

ar =  \frac{1}{2}  \times 16 \times 16 \sqrt{2}  \\  \\ ar =  8 \times 16 \sqrt{2}  \\  \\ ar =  128 \sqrt{2} \:    {unit}^{2}  \\  \\

#lovelove

Answered by Graciousli
5

Question:

The hypotenuse of a right angled isosceles triangle is 16 root 2 find the area.

Answer:

let side of ∆ be x

 {x}^{2}  +  {x}^{2}  =  {(16 \sqrt{2})}^{2}   \\  \\ 2 {x}^{2}  = 16 \times 16 \times 2 \\  \\  {x}^{2}  = 16 \times 16 \\  \\ x = 16  \: unit\\  \\

area of ∆

ar =  \frac{1}{2}  \times 16 \times 16 \\  \\ ar = 8 \times 16 \\  \\ ar = 128 \: \:  {unit}^{2}

Similar questions