The hypotenuse of a right angled triangle is 17cm and the difference between other two sides is 7cm. Find the sides and its Perimeter.
Answers
Answered by
20
Required Answer :
- First side = 10 cm
- Second side = 17 cm
- Perimeter of the triangle = 44 cm
Given :
- Hypotenuse of a right angled triangle = 17 cm
- The difference between the other two sides = 7
To find :
- The two sides
- The perimeter of triangle
Solution :
Let,
- The first side of triangle = x cm
- The second side of triangle = x + 7 cm
Using pythagoras theorem,
- H² = P² + B²
where,
- H denotes the hypotenuse
- P denotes the perpendicular
- B denotes the base
⇒ (17)² = (x)² + (x + 7)²
⇒ 289 = x² + x² + 49 + 14x
⇒ 289 = 2x² + 49 + 14x
⇒ 2x² + 49 + 14x - 289 = 0
⇒ 2x² + 14x - 240 = 0
⇒ 2(x² + 2x - 120) = 0
⇒ x² + 2x - 120 = 0
⇒ x² + 12x - 10x - 120 = 0
⇒ x(x + 12) - 10(x + 12) = 0
⇒ (x - 10)(x + 12) = 0
⇒ (x - 10) = 0 or (x + 12) = 0
⇒ x = 10 or x = - 12 Reject - ve
Therefore,
- The value of x = 10
The other two sides of triangle :
First side :
⇒ First side = x
⇒ First side = 10 cm
Second side :
⇒ Second side = x + 7
⇒ Second side = 10 + 7
⇒ Second side = 17 cm
Using formula,
- Perimeter of triangle = sum of all sides
⇒ Perimeter = 17 + 10 + 17
⇒ Perimeter = 44
Therefore,
- Perimeter of the triangle = 44 cm
Similar questions