the hypotenuse of a right angled triangle is 25 cm if one side 5m more than the other side find its area
Answers
Answered by
14
Solution :-
There is a mistake in this question. The length of one of the two sides must be 5 cm instead of 5 m.
Let smaller side of the right angled triangle be x cm
Then, the other side will be (x + 5) cm
Using Pythagoras Theorem -
(Hypotenuse)² = (Base) + (Perpendicular)²
⇒ (25)² = (x)² + (x + 5)²
⇒ 625 = x² + x² + 10x + 25
⇒ 2x² + 10x - 625 + 25 = 0
⇒ 2x² + 10x - 600 = 0
⇒ x² + 5x - 300 = 0
⇒ x² + 20x - 15x - 300 = 0
⇒ x(x + 20) - 15 (x + 20) = 0
⇒ (x - 15) (x + 20) = 0
⇒ x = 15, x = - 20
x cannot be negative. So, x = 15 cm
Other side of the triangle will be 15 + 5 = 20 cm
The two sides of the given triangle are 15 cma nd 20 cm
Now,
Area of the given triangle = 1/2*Base*Height
⇒ 1/2*15*20
⇒ 300/2
= 150 cm²
So, area of the given triangle is 150 cm²
Answer.
There is a mistake in this question. The length of one of the two sides must be 5 cm instead of 5 m.
Let smaller side of the right angled triangle be x cm
Then, the other side will be (x + 5) cm
Using Pythagoras Theorem -
(Hypotenuse)² = (Base) + (Perpendicular)²
⇒ (25)² = (x)² + (x + 5)²
⇒ 625 = x² + x² + 10x + 25
⇒ 2x² + 10x - 625 + 25 = 0
⇒ 2x² + 10x - 600 = 0
⇒ x² + 5x - 300 = 0
⇒ x² + 20x - 15x - 300 = 0
⇒ x(x + 20) - 15 (x + 20) = 0
⇒ (x - 15) (x + 20) = 0
⇒ x = 15, x = - 20
x cannot be negative. So, x = 15 cm
Other side of the triangle will be 15 + 5 = 20 cm
The two sides of the given triangle are 15 cma nd 20 cm
Now,
Area of the given triangle = 1/2*Base*Height
⇒ 1/2*15*20
⇒ 300/2
= 150 cm²
So, area of the given triangle is 150 cm²
Answer.
Similar questions