English, asked by Anonymous, 11 months ago

The hypotenuse of a right triangle is 10cm long. If one leg is 2 units longer than the other leg, then how long is the longer leg?(M not leaving brainly.. still active don't worry!) ​

Answers

Answered by Pravinojha
1

Answer:

above attachment may help u.

THANKS...........

Attachments:
Answered by Anonymous
5

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

The hypotenuse of a right triangle is 10cm long. If one leg is 2 units longer than the other leg, then how long is the longer leg?

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • The hypotenuse of a right triangle is 10cm long.
  • If one leg is 2 units longer than the other leg .

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Length of longer leg /

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Let,

  • second leg = x.

A/C to question,

( one leg is 2 units longer than the other leg )

➠ first leg = (x+2).

So,

we can say that here,

  • Base = (x+2)
  • Perpendicular = x.

Pythagoras theorem

\boxed{\underline{\tt{\red{\:(Hypotenuse)^2\:=\:(perpendicular)^2+(Base)^2}}}}

So,

:\mapsto\tt{\:(10)^2\:=\:(x+2)^2+x^2} \\ \\ :\mapsto\tt{\:(x^2+x^2+4x+4)\:=\:100} \\ \\ :\mapsto\tt{\:2x^2+4x-96\:=\:0} \\ \\ :\mapsto\tt{\:x^2+2x-48\:=\:0} \\ \\ :\mapsto\tt{\:x^2+8x-6x-48\:=\:0} \\ \\ :\mapsto\tt{\:x(x+8)-6(x+8)\:=\:0} \\ \\ :\mapsto\tt{\:(x-6)(x+8)\:=\:0} \\ \\ :\mapsto\tt{\:(x-6)\:=\:0\:\:Or\:(x+8)\:=\:0} \\ \\ :\mapsto\tt{\orange{\:x\:=\:6\:\:Or\:\:x\:=\:-8}}

But, we know length is always positive .

So,

  • x = -8 Negligible .

Then take ,

  • x = 6

\Large{\underline{\mathfrak{\bf{Hence}}}}

  • Base = (x+2) = (6+2) = 8 unit .
  • Perpendicular (x) = 6 unit

___________________

Similar questions