Math, asked by sachinkumar63, 1 year ago

The hypotenuse of a right triangle is 17 cm long. If one side of the remaining two sides of length 8 cm, find the length of the third side


randomp361: ohh yea im good to
randomp361: sorry i know the word but i didnt know it in the context u used
randomp361: Why did you delete all the comments ?
randomp361: Thats so weird it says all your cmnts were deleted
randomp361: I dont have watsapp

Answers

Answered by harry1595
18
If triangle ABC assume right angle at B
so,
Ac = 17cm
Ab= 8 cm

BCsquare = ACsquare - AB square
BC = √(17)square - (8)square
Bc=√289-64
BC=√225
BC=15 cm
Answered by llTheUnkownStarll
7

Question:

  • The hypotenuse of a right triangle is 17 cm long if one of the remaining two sides is of length 8cm. Find the length of the third side

Answer:

  • Hence, the length of third side is 15cm.

Step-by-step Explanation:

Given:

  • The hypotenuse of a right triangle is 17cm long.
  • If one of the remaining two sides is of length 8cm.

To Find:

  • Length of 3rd side

Solution:

  • Let the 3rd side be x

 \begin{gathered}{\large {\underline{ \underline{ \sf{ \pmb{\red{Using Pythagoras Theorem}}}}}}} \\ \\ :\implies \underline{ \boxed{ \frak{{(h)}^{2}={(a)}^{2}+{(b)}^{2}}}} \color{navy} \bigstar \\  \\   :\implies \sf{{(17)}^{2}={(8)}^{2}+{(x)}^{2}} \\  \\ :\implies \sf{289=64+{(x)}^{2}} \\  \\ :\implies \sf{289-64={(x)}^{2}} \\  \\ :\implies \sf{225={(x)}^{2}} \\  \\ :\implies \sf{\sqrt{225}=x} \\  \\ : \implies   \underline{\boxed{ \frak{x = 15 \: cm}}} \color{green} \bigstar  \\  \\ \sf \: ∴ \underline {Hence, the length of third side is  \textbf{ \textsf{15 cm}}} . \end{gathered}

нσρє iт нєℓρѕ

нαρρу ℓєαяηiηg :)

\\

тнαηк үσυ

||TheUnknownStar||

Similar questions