Math, asked by shinyjohnas1234, 5 months ago

the hypotenuse of a right triangle is 2 1/2 and another side is 1 1/2m calculate its perimeter​

Answers

Answered by Draler
0

Step-by-step explanation:

given:

Hypotenuse=h=5/2 cm(or m)

another side( perpendicular)= p= 3/2 cm( or m)

let the 3rd side i.e base be b cm.

we know that,

=+b². [Pythagoras theorem]

A.T.Q,

(5/2)²=(3/2)²+b²

=> 25/4= 9/4+ b²

=>25/4 - 9/4= b²

=>b²=16/4

=>b²=4

=b=√4=2cm.

perimeter= h+b+p

=5/2 +3/2+ 2

=(5+3+4)/2 [ by LCM, 2 becomes 4/2]

=12/2=6cm(or m)

hope it helps.

Answered by deepak35679
0

Answer:

4(4 +  \sqrt{10} )m

Step-by-step explanation:

given \: that \\ h =  \frac{21}{2}m \:  and \\ p =  \frac{11}{2} m \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ therefore \: b =  \sqrt{ {h}^{2} -  {p }^{2}  }  \\ b =  \sqrt{ {( \frac{21}{2}) }^{2}  -  {( \frac{11}{2} )}^{2} }

 \: b =  \sqrt{ \frac{441}{2} -  \frac{121}{2}  }

 =  \sqrt{ \frac{441 - 121}{2} }  \\  =  \sqrt{ \frac{320}{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  \sqrt{160}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 4 \sqrt{10} m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so the perimeter is

 \frac{21}{2}  +  \frac{11}{2}  + 4 \sqrt{10 }  \\  =  \frac{32}{2}  + 4 \sqrt{10}  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 16 + 4 \sqrt{10}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 4(4 +  \sqrt{10})m \:  \:  \:  \:

Similar questions