Math, asked by sainisaab77, 1 year ago

The hypotenuse of right angled triangle is 17 cm long If one of the remaining two sides is of length 8 cm ,find the length of the other third side​

Answers

Answered by farazhussain63
2

Step-by-step explanation:

We are given the hypotenuse and the length of one side.

Let the unknown side be x.

Let the unknown side be x.By Pythagorean theorem,

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,8²+x² = 17²

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,8²+x² = 17²x²=225

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,8²+x² = 17²x²=225x² = 15²

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,8²+x² = 17²x²=225x² = 15²x=15

Let the unknown side be x.By Pythagorean theorem,a²+b²=c²So,8²+x² = 17²x²=225x² = 15²x=15 Thus the length of the other side is 15cm.

please mark as brainliest

Answered by SANDHIVA1974
1

Given :

The hypotenuse of a right triangle is 17 cm long .

If one of the remaining two sides is of length 8 cm .

To Find :

Length of third side .

Solution :

\longmapsto\tt{Let\:third\:side\:be=x}

Using Pythagoras Theorem :

\longmapsto\tt\bf{{(h)}^{2}={(a)}^{2}+{(b)}^{2}}

\longmapsto\tt{{(17)}^{2}={(8)}^{2}+{(x)}^{2}}

\longmapsto\tt{289=64+{(x)}^{2}}

\longmapsto\tt{289-64={(x)}^{2}}

\longmapsto\tt{225={(x)}^{2}}

\longmapsto\tt{\sqrt{225}=x}

\pink\longmapsto\:\large\underline{\boxed{\bf\green{x}\red{=}\blue{15\:cm}}}

So , The Length of third side is 15 cm .

Similar questions