Math, asked by montikansal4802, 1 year ago

the image of a point with respect to the line 2x-y+6=0 assuming the line to be a mirror is(6,6) find the point

Answers

Answered by MaheswariS
5

Answer:

The image of the given point is

(\frac{-18}{5},\frac{54}{5})

Step-by-step explanation:

Formula used:

The coordinates of the image of the point

(x_1,y_1) with respect to the line ax+by+c=0 are given by

\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{-2(ax_1+by_1+c)}{a^2+b^2}

Given line is 2x-y+6=0

Now using the above formula

\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{-2(ax_1+by_1+c)}{a^2+b^2}

\frac{x-6}{2}=\frac{y-6}{-1}=\frac{-2(2(6)-1(6)+6)}{2^2+(-1)^2}

\frac{x-6}{2}=\frac{y-6}{-1}=\frac{-2(12-6+6)}{4+1}

\frac{x-6}{2}=\frac{y-6}{-1}=\frac{-24}{5}

Now

\frac{x-6}{2}=\frac{-24}{5}

x-6=\frac{-48}{5}

x=6+\frac{-48}{5}

x=\frac{30-48}{5}

x=\frac{-18}{5}

\frac{y-6}{-1}=\frac{-24}{5}

y-6=\frac{24}{5}

y=6+\frac{24}{5}

y=\frac{30+24}{5}

y=\frac{54}{5}

The image of the given point is

(\frac{-18}{5},\frac{54}{5})

Similar questions