Math, asked by bhavyaganglanibcc12, 2 months ago

the income of a is 2/3 of b s income and the expenditure of a is 3/4 of b;s expenditure.if one third income of b is equal to the expenditure of a then the ratio of savings of a and b js​

Answers

Answered by jeffarz01
1

Answer:

3:5

Step-by-step explanation:

Let income of A and B be a, b respectively.

Let expenditure of A and B be x, y respectively.

Income - Expenditure = Savings

The income of a is 2/3 of b s income.

a =  \frac{2}{3} b

the expenditure of a is 3/4 of b's Expenditure

x =  \frac{3}{4} y

one third income of b is equal to the expenditure of a

 \frac{1}{3} b = x

Savings of A = a -x ( in terms of b)

a - x =   \frac{2}{3} b -  \frac{1}{3} b =  \frac{1}{3} b

Savings of B = b - x ( in terms of b)

b - y = b -  \frac{4}{3} x = b -  \frac{4}{3}  \times  \frac{1}{3} b =  \frac{5}{9} b

Ratio of savings of A and B = 1/3 b : 5/9 b

= 3:5

Similar questions