The income of A is 70% of the income of B and the expenditure of B is 20% less than the expenditure of
A. If the expenditure of A is equal to 60% of B's income, what is the ratio of savings of A and B ?
Answers
Answer:
A=70. B=100
Exp A=60 B=48
10:52
5:26
The ratio of savings of A & B is 1/4
Step-by-step explanation:
Given:
income of A is 70% of the income of B
expenditure of B is 20% less than the expenditure of A
expenditure of A= B's income
To find:
the ratio of savings of A & B
Solution:
Let's assume B's income is y and his expenditure as x
∴ A's income= 70% of y
∴ A's income= 70/100 X y
∴ A's income= 0.7y
Expenditure of B=20% of expenditure of A-expenditure of A
x=20/100-expenditure of A
x= 0.2-expenditure of A
Expenditure of A= 0.2-x
But, A's expenditure= 60% of B's income
A's expenditure= 60/100 X y
∴ A's expenditure= 0.6y
x= 0.2-expenditure of A
B's expenditure= 0.2-0.6y
Now, let's assume B's income as Rs.100
y=100
A's income= 0.7y
=0.7(100)
A's income= 70
Now, A's expenditure= 0.6y
A's expenditure= 0.6(100)
A's expenditure= 60
A's savings= A's Income- A's Expenditure
A's savings= 70-60
A's savings= 10
Next, if A's income is 70 then,
70% of B's income= A's income
70/100 X B's income= 70
B's income= 70 X 100
70
B's income= 100
expenditure of B= 20%- expenditure of A
But the expenditure of A is equal to 60% of B's income
expenditure of B= 60% of 100
expenditure of B= 60/100 X 100
expenditure of B= 60
B's savings= B's income- B's expenditure
B's savings= 100-60
B's savings= 40
The ratio of savings of A & B is 10/40= 1/4
#SPJ3