The incomes of X and Y are in the ratio 8 : 7 and their expenditures are in the ratio 19 : 16. If each saves Rs. 1250, find their incomes.
I will mark your answer as brainliest answer...if you give me the appropriate answer!!
Answers
Answered by
15
Answer :-
- Income of X = 6000 Rs
- Income of Y = 5250 Rs
Given :-
- Ratio of incomes of X and Y is 8 : 7
- Ratio of expenditures of X and Y is 19 : 16
- each person saves Rs. 1250
To find :-
- Incomes of X and Y
Solution :-
Let, incomes of X and Y be
8 a and 7 a respectively
and,
Let, their expenditures be
19 b and 16 b respectively
then,
→ 8 a - 19 b = 1250
→ 8 a = 1250 + 19 b
→ a = ( 1250 + 19 b ) / 8 ....eqn (1)
Also,
→ 7 a - 16 b = 1250
using eqn (1)
→ 7 (( 1250 + 19 b ) / (8)) - 16 b = 1250
taking LCM in LHS
→ ( 7 ( 1250 + 19 b ) - 128 b ) / 8 = 1250
cross multiplying
→ 8750 + 133 b - 128 b = 10000
→ 5 b = 1250
→ b = 1250 / 5
→ b = 250
putting value of b is eqn (1)
→ a = ( 1250 + 19 b ) / 8
→ a = ( 1250 + 19 ( 250 ) ) / 8
→ a = ( 1250 + 4750 ) / 8
→ a = 6000 / 8
→ a = 750
Therefore,
Income of X = 8 a
= 8 ( 750 )
Income of X = 6000 Rs
Income of Y = 7 a
= 7 ( 750 )
Income of Y = 5250 Rs.
Similar questions