Physics, asked by jaylaxmi8822, 11 months ago

The initial pressure and volume of a given mass of a gas (Cp/Cv = γ) are p0 and V0. The gas can exchange heat with the surrounding. (a) It is slowly compressed to a volume V0/2 and then suddenly compressed to V0/4. Find the final pressure. (b) If the gas is suddenly compressed from the volume V0 to V0/2 and then slowly compressed to V0/4, what will be the final pressure?

Answers

Answered by bhuvna789456
2

Final pressure -

(a)  When the volume is compressed to to  \frac{V_0}{2}  the condition is \mathrm{P}_{2}=2 \mathrm{P}_{0} and \frac{V_0}{2} to \frac{V_0}{4} is P_2=\mathrm{P}_{0} 2^{\mathrm{y}+1}

(b) The condition when the volume compressed from V_0  \text {to}  \frac{V_0}{2} is \mathrm{P}^{\prime}=\mathrm{P}_{0} 2^{\gamma} and from\frac{V_0}{2} to  \frac{V_0}{4}  is \mathrm{P}^{n}=\mathrm{P}_{0} 2^{\gamma+1}

Explanation:

Given Data

In case of  gas,

\gamma=\frac{c_{p}}{c_{v}}

\text {Initial gas pressure} = P_0

\text {Initial gas volume }=\mathrm{V}_{0}

(a)  Slowly compressed to a volume \frac{V_0}{2} and then slowly compressed to \frac{V_0}{4}

(i) As the gas is compressed gradually the temperature should stay constant.  

For compression by isothermal,

\mathrm{P}_{1} \mathrm{V}_{1}=\mathrm{P}_{2} \mathrm{V}_{2}

\mathrm{P}_{0} \mathrm{V}_{0}=\mathrm{P}_{2} \frac{\mathrm{V}_{0}}{2}

\mathrm{P}_{2}=2 \mathrm{P}_{0}

(ii) Sudden compression means that the gas has not been able to get enough time to exchange heat with its atmosphere. So, it's a compression of adiabatic.  

So, to compact adiabatically,

\mathrm{P}_{1} \mathrm{V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{V}_{2}^{\gamma}

2 \mathrm{P}_{0}\left(\frac{\mathrm{V}_{0}}{2}\right)^{\gamma}=\mathrm{P}_{2}\left(\frac{\mathrm{V}_{0}}{4}\right)^{\gamma}

\mathrm{P}_{2}=\frac{\mathrm{V}_{0}^{\gamma}}{2} \times 2 \mathrm{P}_{0} \times \frac{4^{\gamma}}{\mathrm{V}_{0}^{\gamma}}

    =2^{\gamma} \times 2 \mathrm{P}_{0}

   =\mathrm{P}_{0} 2^{\mathrm{y}+1}

P_2=\mathrm{P}_{0} 2^{\mathrm{y}+1}

(b) ) If the gas is suddenly compressed from the volume V_0  \text {to}  \frac{V_0}{2} and then slowly compressed to \frac{V_0}{4} , what will be the final pressure

(i) Compression with adiabatic effect:

\mathrm{P}_{1} \mathrm{V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{V}_{2}^{\gamma}

\mathrm{P}_{0} \mathrm{V}_{0}^{\gamma}=\mathrm{P}^{\prime}\left(\frac{\mathrm{V}_{0}}{2}\right)^{\gamma}

\mathrm{P}^{\prime}=\mathrm{P}_{0} 2^{\gamma}

(ii) Compression with Isothermal effect:

\mathrm{P}_{1} \mathrm{V}_{1}=\mathrm{P}_{2} \mathrm{V}_{2}

\mathrm{P}_{0} 2^{\mathrm{Y}} \times \frac{\mathrm{V}_{0}}{2}=\mathrm{P}^{\prime \prime}\left(\frac{\mathrm{V}_{0}}{2}\right)

\mathrm{P}^{\prime \prime}=\mathrm{P}_{0} 2^{y} \times 2

\mathrm{P}^{n}=\mathrm{P}_{0} 2^{\gamma+1}

Therefore the final pressure, when the volume is compressed to  \frac{V_0}{2}  the condition is \mathrm{P}_{2}=2 \mathrm{P}_{0} and from \frac{V_0}{2} to \frac{V_0}{4} is P_2=\mathrm{P}_{0} 2^{\mathrm{y}+1}and the condition for the final pressure when the volume compressed from  V_0  \text {to}  \frac{V_0}{2} is \mathrm{P}^{\prime}=\mathrm{P}_{0} 2^{\gamma} and from\frac{V_0}{2} to  \frac{V_0}{4}  is \mathrm{P}^{n}=\mathrm{P}_{0} 2^{\gamma+1} where V_o and P_0 be the initial pressure.

Similar questions