Physics, asked by sagnik124832, 4 days ago

The initial velocity of a body is 10 m/s. After 5 s, the velocity of the body is 30 m/s. Its acceleration is ____ .​

Answers

Answered by ImperialGladiator
23

Answer:

The initial velocity of a body is 10 m/s. After 5 s, the velocity of the body is 30 m/s. Its acceleration is 4m/

Explanation:

Given parameters,

  • Initial velocity of the body = 10m/s
  • Final velocity = 30m/s
  • Time = 5 s

Acceleration is given by:

→ (v - u)/t

Where,

  • v(final velocity) = 30 m/s
  • u(initial velocity) = 10 m/s
  • t(time) = 5 s

From the given parameters,

→ (30 - 10)/5

→ 20/5

→ 4 m/s²

The acceleration of the body is 4m/

_____________________

Answered by ItzDinu
2

\huge⚘ \bf \ \red{Answer}

\Large\underline{\pink{\underline{\frak{\pmb{given }}}}}

 \tt { =  > initial \: \:  velocity} =  \red{10 \: m/s}

 \tt{ =  > final \:  \: velocity} =  \red{30 \: m/s}  \\  =  > \tt{ time \:  =  \red{5s}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\Large\underline{\pink{\underline{\frak{\pmb{to \: find }}}}}

 \tt{acceleration}

\Large\underline{\pink{\underline{\frak{\pmb{solution}}}}}

formula    =  > \tt{a =  \dfrac{v - u}{t} }

 \tt{a =  \dfrac{30 - 10}{5} }

 \tt{a =  \dfrac{20}{5} }

 \tt{a =  \dfrac{ \cancel{20}}{ \cancel{5}} }

 \tt{a =  \red{4 \: m/s ^{2} }}

  • I Hope It's Helpful My Friend.

Similar questions