Math, asked by pratikshaprakash, 1 year ago

The inner and outer diameters of a circular path are 630 m and 658 m respectively.Find the area of the circular path.

Answers

Answered by TooFree
71

 \textbf {Hey there, here is the solution.}

.............................................................................................

STEP 1: Find the area of the inner circle:

Diameter = 630 m

Radius = Diameter ÷ 2

Radius = 630 ÷ 2 = 315 m

Area = πr²

Area = π(315)²

Area = 99225π m²

.............................................................................................

STEP 2: Find the area of the outer circle:

Diameter = 658 m

Radius = Diameter ÷ 2

Radius = 658 ÷ 2 = 329 m

Area = πr²

Area = π(329)²

Area = 108241π m²

.............................................................................................

STEP 3: Find the area of the circular path:

Area = 108241π - 99225π

Area = 9016π m²

Area = 28336 m²

.............................................................................................

Answer: Area of the circular path is 28,336 m²

.............................................................................................

 \textbf {Cheers}


pratikshaprakash: thankyou so much.......
DaIncredible: Awesome answer ;D
TooFree: Thank you @DaIncredible
DevilDoll12: Great Answer :)
riya3898: Diameter of inner circle=630. Radius=Diamter/2. =630÷2=315. Area of inner circle=πr² =22/7×315×315. = 311850m² Diameter of outer circle=658. Radius=Diameter÷2. =658÷2=329. area of outer circle=πr² =22/7×329×329. =50660m² Area of both circles= area of inner circle+area of outer circle. =311850m²+403226m²=417576m²
fertrable: guys i am very sorry about the wrong answer i posted , my apologies...
pratikshaprakash: its ok
Answered by Shubhendu8898
10

Given,

Let the radius of inner circle be r and radius of outer circle be r+h where h width of circular path.

r = 630/2 = 315m

r +h = 658/2 = 329

h = 329 - 315 = 14m

 \text{Area  of inner circle} =  \pi r^{2}  \\ \\ \text{Area  of outer  circle} = \pi (r+h)^{2} \\ \\ So, \\ \\ \text{Area of  circular path = Area of outer  circle - Area of  inner circle}   \\ \\  \ \ \ =  \pi (r+h)^{2} -  \pi r^{2} \\ \\ =\pi(r^{2} + h^{2} + 2hr - r^{2})  \\ \\ = \pi(h^{2}   + 2hr)  \\ \\ = \pi h(h + 2r) \\ \\  = \frac{22}{7}*14( 14 + 2*315) \\ \\ = 22*2(14 + 630) \\ \\  = 44* 644 \\ \\ = 28336 \ m^{2} \ \  \textbf{Ans.}



Attachments:

pratikshaprakash: thankyou so much
Similar questions