Math, asked by rinkipathak2835, 1 year ago

the inner circumference of a circular track is 176 the track is 7 metre wide calculate the: (a) area of the track. (b)cost of putting a persons along the outer circle @ rupees 12 per metre used equal to 22 /7​

Answers

Answered by Anonymous
171

Correct Question :

The inner circumference of a circular track is 176 m². The track is 7 m wide.

Calculate the : (a) Area of the Track. (b) Cost of putting a fence along the outer circle @ Rs. 12 per Metre. Use π equal to 22 /7.

AnswEr :

\bold{Given} \begin{cases}\sf{Inner  \:Circumference=176 {m}^{2} } \\ \sf{Width=7m}\end{cases}

\begin{center}\setlength{\unitlength}{1.3 pt}\begin{picture}(100,100)(0,0)\put(0,0){\circle{50}} \put(0,0){\circle{22}} \put(0,0){\circle*{1.5}}\put(-16,0){\line(1,0){31.5}}\put(-15,1.5){$7$}\end{picture}\setlength{\unitlength}{1 pt}\end{center}

According to the Question Now :

\implies \tt Inner \:Circumference = 2\pi r

\implies \tt 176 = 2 \times \dfrac{22}{7} \times r

\implies \tt \cancel{176}\times \dfrac{7}{ \cancel{44}}  = r

\implies \tt 4 \times 7 = r

\implies \blue{\tt r = 28m}

\rule{300}{1}

⇒ Radius ( R ) = Radius ( r ) + Width

⇒ Radius ( R ) = 28 m + 7 m

Radius ( R ) = 35 m

\rule{300}{1}

(a) Area of the Track :

\longrightarrow \tt Area \:of \:Track = Outer \:Area - Inner \: Area

\longrightarrow \tt Area \:of \:Track = \pi {(R)}^{2} - \pi {(r)}^{2}

\longrightarrow \tt Area \:of \:Track = \pi( {(R)}^{2} - {(r)}^{2} )

\longrightarrow \tt Area \:of \:Track =  \dfrac{22}{7} ( {(35)}^{2} - {(28)}^{2} )

\longrightarrow \tt Area \:of \:Track =  \dfrac{22}{7}(35 + 28)(35 - 28)

\longrightarrow \tt Area \:of \:Track =  \dfrac{22}{\cancel7} \times 63 \times \cancel7

\longrightarrow \tt Area \:of \:Track = 22 \times 63

\longrightarrow\large\boxed{\tt Area \:of \:Track = 1386 {m}^{2}}

Hence, Area of the Track is 1386 .

\rule{300}{2}

(b) Cost of putting a fence along the outer circle @ Rs. 12 per Metre.

\longrightarrow \tt Cost = Circumference \times Rate

\longrightarrow \tt Cost = 2\pi R \times Rate

\longrightarrow \tt Cost = (2 \times  \dfrac{22}{ \cancel7} \times \cancel35) \times Rs. 12

\longrightarrow \tt Cost = (2 \times  22\times 5)\times Rs.12

\longrightarrow\tt Cost = 220 \times Rs.12

\longrightarrow \large \boxed{\tt Cost = Rs. \: 2640}

Cost of Outer Fencing is Rs. 2640.

Answered by itzNarUto
63

Answer:

Radius of inner circle = 176/2*7/22=28m

Radius of outer circle = 35m

Area of path= (22/7*35*35) - (22/7*28*28) ⠀⠀⠀⠀⠀⠀⠀ = 1386m^2

Total Cost = 2×22/7×35×12

⠀⠀⠀⠀⠀⠀⠀= 2640 rupees

Similar questions