Math, asked by dudikumara4, 1 day ago

The inner diameter of a circular well is 7 meter and  it is 10 meter deep. Its inner curved surface area is​(trisha)​

Answers

Answered by ItzHannu001
3

Given:-

  • Inner diameter is 7 m, So, Radius= 7/2 = 3.5 m (r)
  • Height= 10m (h)

 \\

To Find:-

  • Inner curved surface area (CSA)

 \\

Formula used:-

 \sf \large { \boxed{ \red{ \sf{CSA  \tiny(Cylinder) \large{ = 2\pi rh}}}}}

 \\

Putting values,

 \sf \large { \boxed{ \sf \implies{CSA  \tiny(Cylinder) \large{ = 2 \times  \frac{22}{7}  \times 3.5 \times 10}}}}

 \sf \large { \boxed{ \sf \implies{CSA  \tiny(Cylinder) \large{ = 2 \times  \frac{22}{7}  \times \frac{35}{ \cancel{10}}  \times  \cancel{10}}}}}

 \sf \large { \boxed{ \sf \implies{CSA  \tiny(Cylinder) \large{ = 2 \times  \frac{22}{ \cancel7}  \times  \cancel7 \times 5}}}}

 \sf \large { \boxed{ \sf \implies{CSA  \tiny(Cylinder) \large{ = 44  \times5 }}}}

 \sf \large { \boxed{ \sf \implies{ \blue{{CSA  \tiny(Cylinder) \large{ = 220 {m}^{2}  }}}}}}

__________________________

 \\

So, Required curved surface area of cylinder= 220

Similar questions