Math, asked by Shakti5107, 1 year ago

The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm. The length of the pipe is 35 cm. Find the mass of the pipe, if I cm³ of wood has a mass of 0.6 g.

Answers

Answered by ujalasingh385
24

Answer:

Mass of the Pipe=3432gms          taking \pi=\frac{22}{7}

Step-by-step explanation:

In this question we have been provided,

Outer diameter, D = 28cm,

Therefore radius, R =\frac{diameter}{2}=\frac{28}{2}=14cm

Inner diameter, d = 24cm

Therefore radius, r = \frac{diameter}{2}=\frac{24}{2}=12cm

Height of the pipe, h = 35cm

\textrm{volume of cylinder=}\pi r^{2} h

\textrm{Volume of cylinder with r=14cm=}\pi\times 14^{2}\times h=\pi\times 14^{2}\times 35=6860\pi cm^{3}

\textrm{Volume of cylinder with r=12cm=}\pi\times 12^{2}\times h=\pi\times 12^{2}\times 35=5040\pi cm^{3}

\textrm{Net Volume=}6860\pi-5040\pi=1820\pi cm^{3}

\textrm{Mass of the pipe=}1820\pi\times 0.6=1092\pi=1092\pi\times \frac{22}{7}=156\times 22=3432grams.

Hence Mass of Pipe we are getting is 3432grams.

Answered by Anonymous
90

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

{\boxed{\sf\:{Internal\;Radius}}}

= r cm

Diameter = 24 cm

\tt{\rightarrow radius(r)=\dfrac{24}{2}}

r = 12 cm

Now,

{\boxed{\sf\:{External\;Radius}}}

\tt{\rightarrow Radius(R)=\dfrac{28}{2}}

R = 14 cm

{\boxed{\sf\:{Length\;of\;Pipe}}}

= 35 cm

\textbf{\underline{Volume\;of\;wood\;that\;is\;used\;in\;Pipe}}

= πR²h - πr²h

= π(R² - r²)h

\tt{\rightarrow\dfrac{22}{7}(14^2 - 12^2)\times 35}

= 22 × 5(14² - 12²)

= 110(14 - 12)(14 + 12)

= 110 × 2 × 26

= 220 × 26 cm³

Now

{\boxed{\sf\:{Mass\;of\;Wooden\;pipe}}}

= Volume × Density of wood

= 220 × 26 × 0.6 gm

\tt{\rightarrow 220\times 26\times\dfrac{6}{10}\times\dfrac{1}{1000}kg}

\tt{\rightarrow\dfrac{3432}{1000}}

= 3.432 kg

Similar questions