The inner radius and height of an open cylindrical vessel are 2.1/3 cm and 9cm respectively.what is the greatest number of cubic cm of liquid it can hold?
Answers
Answer:
Use the formula πr^2h
Here it will be 22/7*2.1/3*2.1/3*9
it will give = 13.86 cubic cm
Answer:
The greatest number of cm³ of liquid cylindrical vessel can hold = 154 cm³
Step-by-step explanation:
Here, the inner radius of open cylindrical vessel,r = 2(1/3) cm (It is given in mixed fraction)
= 7/3 cm
Also, the height of open cylindrical vessel , h = 9 cm
The value of π = 22/7
As, the greatest number of cubic cm of liquid cylindrical vessel can hold = volume of cylindrical vessel
=> the greatest number of cm³ of liquid cylindrical vessel can hold = πr²h
= (22/7) * (7/3) * (7/3) * 9
= 154 cm³
Thus, the greatest number of cm³ of liquid cylindrical vessel can hold = volume of open cylindrical vessel = 154 cm³