Math, asked by neha5849, 10 months ago

The inner radius of a metallic cylindrical pipe is 8cm and its outer radius is 9cm. If the
length of the pipe is 14 cm, find its volume.​

Answers

Answered by SarcasticL0ve
17

Given:-

  • Inner radius of a metallic cylindrical pipe is 8cm.
  • Outer radius of a metallic cylindrical pipe is 9cm.
  • Length of pipe is 14cm

To find:-

  • Volume of cylindrical pipe.

Solution:-

  • Let's inner radius be (r) cm
  • Let's outer radius be (R) cm

Volume of cylinder :- πr²h

:\implies \sf{ \bigg( \pi \times \ R^2 \times h \bigg) - \bigg( \pi \times r^2 \times h \bigg)}

:\implies \sf{ \pi \times h( R^2 - r^2)}

:\implies \sf{ \dfrac{22}{ \cancel{7}} \times \cancel{14} \times (81 - 64)}

:\implies \sf{ 22 \times 2 \times 17}

:\implies \; \large\bold{\underline{\underline{\boxed{\sf{\red{\dag \; 748cm^3}}}}}}

\rule{200}{2}

Answered by Anonymous
8

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ volume \ of \ metallic \ pipe \ is}

\sf{748 \ cm^{3}}

\sf\orange{Given:}

\sf{For \ metallic \ cylindrical \ pipe,}

\sf{\implies{Inner \ radius \ (r1)=8 \ cm}}

\sf{\implies{Outer \ radius \ (r2)=9 \ cm}}

\sf{\implies{Height \ (h)=14 \ cm}}

\sf\pink{To \ find:}

\sf{The \ volume \ of \ a \ metallic \ cylindrical}

\sf{pipe.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Volume \ of \ cylinder=\pi\times \ r^{2}\times \ h}

\sf{…formula}

\sf{\therefore{Volume \ of \ metallic \ pipe}}

\sf{\implies{(\pi\times \ r2^{2}\times \ h)-(\pi\times \ r1^{2}\times \ h)}}

\sf{\implies{\pi\times \ h(r2^{2}-r1^{2})}}

\sf{\implies{\frac{22}{7}\times14\times(9+8)(9-8)}}

\sf{\implies{22\times2\times17}}

\sf{\implies{748 \ cm^{3}}}

\sf\purple{\tt{\therefore{The \ volume \ of \ metallic \ pipe \ is}}}

\sf\purple{\tt{748 \ cm^{3}}}

Similar questions