The integral ∫ sec²/³ x cosec⁴/³ x dx is equal to: (Here C is a constant of integration)
(A) 3 tan⁻¹/³ x + C (B) -3/4 tan⁻⁴/³ x + C (C) -3 cot⁻¹/³ x + C (D) -3 tan⁻¹/³ x + C
Answers
∫ sec²/³ x cosec⁴/³ x dx is equal to
-3 tan⁻¹/³ x + C
option D is correct.
∫ sec⅔ x cosec⁴/³x dx
•changing secx and cosecx into cosx & sinx respectively
•we, get
∫ 1/(cos⅔x . sin⁴/³x)
•Divide both numerator and
denominator by cos²x
∫ (1/cos²x)/(cos^-⁴/³x . sin⁴/³x) dx
∫ (1/cos²x)/(cos^-⁴/³x . sin⁴/³x) dx
1/cos²x = sec²x &
(sin⁴/³x)/(cos⁴/³x) = tan⁴/³x
∫ (sec²x)/(tan⁴/³x) dx
•let tanx = t
sec²xdx = dt
∫ dt/(t⁴/³)
∫ t^-⁴/³dt
(t^-⅓)/(-1/3) + c
(-3)tan^-⅓x + c
hence option D is correct.
answer : option (D) -3 tan⁻¹/³ x + C
I = ∫sec⅔x. cosec⁴/³x dx
= ∫1/cos²x × (cos x. cosecx)⁴/³ dx
= ∫ sec²x. (cosx/sinx)⁴/³ dx
= ∫ sec²x/(tanx)⁴/³ dx
= ∫sec²x dx/(tanx)⁴/³ dx
let tanx = P
differentiating with respect to x
sec²x dx = dP
so, I = ∫ dP/(P)⁴/³
= ∫P-⁴/³ dP
= (P-¹/³)/(-4/3 + 1) + C
= -3(P)-¹/³ + C
putting P = tanx
so, I = -3tan-¹/³x + C
also read similar questions :factorise (x-a)^3+(x-b)^3+(x-c)^3 where x=a+b+c/3??<br />plz solve this fast
https://brainly.in/question/10485319
If a, b and c be the distances travelled by the body during xth yth and zth second from start, then which of<br />th...
https://brainly.in/question/10549317