Math, asked by OfficialPk, 3 months ago

The integral
\int\limits {\frac{\sin ^{2}x \cos ^{2} x }{( \sin ^{5} x + \cos ^{3} x \sin ^{2} x + \sin ^{3} x \cos^{2} x + \cos ^{5} x)^{2} } } \, dx \\ \\
Is equal to ?

Answers

Answered by ITZBFF
167

 \sf \red{We  \: have, }

 \\ I = \int\limits {\frac{\sin ^{2}x \cos ^{2} x }{( \sin ^{5} x + \cos ^{3} x \sin ^{2} x + \sin ^{3} x \cos^{2} x + \cos ^{5} x)^{2} } } \, dx \\ \\

 =  \int \limits \:  \frac{ { \sin}^{2} x. { \cos}^{2}x }{ \Big[ \ { \sin}^{3}x( { \sin}^{2} x \: +  { \cos}^{2}x)  \: +   { \cos}^{3}  x( { \sin}^{2}x +  { \cos}^{2} x)\Big  ]^{2}  }dx  \\

 =   \int\limits \:  \frac{  { \sin}^{2}x.  { \cos}^{2}x  }{( { \sin}^{3} x +  { \cos}^{3}x)^{2}  } dx \\

  =  \int \limits \frac{  { \sin}^{2}x. { \cos}^{2}  x}{ { \cos}^{6} x(1 +  { \tan}^{3} x)^{2} } dx \\

 =  \int \limits \frac{ { \tan}^{2} x. { \sec}^{2}x }{(1 +  { \tan}^{3} x) ^{2} } dx \\

 \sf \red{put :} \: { \tan^{3} x \: = \: t} \implies \:  3  { \tan}^{2} x .\:  { \sec}^{2} x.dx \:  = dt

 \therefore \: I \:  =  \:  \frac{1}{3}  \int \limits \frac{dt}{ {(1 + t)}^{2} }  \\

 \implies \: I \:  =  \:  \frac{ - 1}{3(1 + t)}  + c \\

 \boxed{ \boxed{\: I \:  =  \frac{ - 1}{3(1 +  { \tan}^{3} x)}  + c }}\\


MяƖиνιѕιвʟє: Osmm
BrainlyIAS: Adorable :-)
mddilshad11ab: Nice¶
Answered by TheValkyrie
58

Answer:

\sf I= \dfrac{-1}{3(tan^3x+1)}  +C

Step-by-step explanation:

Given:

\sf \dfrac{sin^2x\:cos^2x}{(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2}

To Find:

\displaystyle \sf \int\limits { \dfrac{sin^2x\:cos^2x}{(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2}} \, dx

Solution:

\displaystyle \sf \int\limits { \dfrac{sin^2x\:cos^2x}{(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2}} \, dx

Taking sin²x and cos²x common from the denominator,

\displaystyle \sf \int\limits { \dfrac{sin^2x\:cos^2x}{(sin^2x(sin^3x+cos^3x)+cos^2x(sin^3x+cos^3x))^2}} \, dx

Now taking sin³x + cos³x as common,

\displaystyle \sf \int\limits {\dfrac{sin^2x\:cos^2x}{((sin^3x+cos^3x)(sin^2x+cos^2x))^2} } \, dx

We know that,

sin²x + cos²x = 1

Hence,

\displaystyle \sf \int\limits {\dfrac{(sin^2x\:cos^2x)}{(sin^3x+cos^3x)^2} } \, dx

Taking cos³ x as common,

\displaystyle \sf \int\limits {\dfrac{(sin^2x\:cos^2x)}{cos^6x(tan^3x+1)^2} } \, dx

\displaystyle \sf \int\limits {\dfrac{sin^2x}{cos^4x(tan^3x+1)^2} } \, dx

\displaystyle \sf \int\limits {\dfrac{sin^2x}{cos^2x\times cos^2x(tan^3x+1)^2} } \, dx

\displaystyle \sf \int\limits {\dfrac{tan^2x\times sec^2x }{(tan^3x+1)^2} } \, dx

Now let us assume t = tan³x + 1

Differentiating on both sides,

We know

\sf \dfrac{d}{dx} (tan\:x)=sec^2\:x

dt = 3 tan²x × sec²x dx

dt/3 = tan²x sec²x dx

Substituting this above

\displaystyle \sf \int\limits {\dfrac{dt}{3t^2} } \,

Taking 1/3 outside,

\displaystyle \sf \dfrac{1}{3}\times  \int\limits {\dfrac{dt}{t^2} } \,

\sf \implies \dfrac{1}{3} \times \dfrac{t^{-2+1}}{-2+1} +C

\sf \implies \dfrac{1}{3} \times \dfrac{t^{-1}}{-1} +C

\sf \implies \dfrac{-1}{3} \times t^{-1} +C

Give back the value of t,

\sf \implies \dfrac{-1}{3} \times (tan^3x+1)^{-1} +C

\sf \implies \dfrac{-1}{3(tan^3x+1)}  +C


MяƖиνιѕιвʟє: Osmm
BrainlyIAS: Good :-) ♥
amitkumar44481: Great :-)
TheValkyrie: Thank you all :D
mddilshad11ab: Perfect explaination ✔️
TheValkyrie: Thank you!
Similar questions