The integral value of k for which the equation (k-12)x2+2(k-12)x+2=0 possess no real solution is
Answers
Answered by
3
Answer:
Given :-
➪ (k - 12)x² + 2(k - 12)x + 2 = 0
Solution :-
➪ (k - 12)x² + 2(k - 12)x + 2 = 0
Comparing it with quadratic equation
➭ ax² + bx + c = 0
a = (k - 12)
b = 2(k - 12)
c = 2
Discriminant (D)
➭ b² - 4ac
➭ 4(k - 12)² - 4 × (k - 12) × 2
➭ 4(k - 12) [k - 12 - 2]
➭ 4(k - 12) (k - 24)
Given equation will have real and equal roots, if discriminant = 0
D = 0
➭ 4(k - 12) (k - 14) = 0
➭ (k - 12) = 0
➭ k - 12 = 0
➭ k = 12
Either,
➭ (k - 14) = 0
➭ k - 14 = 0
➭ k = 14
∴ The value of k is 12, 14
Similar questions
India Languages,
1 month ago
English,
2 months ago
English,
2 months ago
Math,
10 months ago
History,
10 months ago