Math, asked by ruturajp97, 6 months ago

the integrating factor for the differential equation (dy/dx)+PY=Q​

Answers

Answered by shadowsabers03
10

Given a differential equation,

\longrightarrow \dfrac{dy}{dx}+P(x)\cdot y=Q(x)

Multiply both sides by I(x) which is called integrating factor, it's a function in x.

\longrightarrow I(x)\cdot\dfrac{dy}{dx}+I(x)\cdot P(x)\cdot y=I(x)\cdot Q(x)\quad\quad\dots(1)

Assume,

\longrightarrow\dfrac{d}{dx}\left[I(x)\right]=I(x)\cdot P(x)\quad\quad\dots(2)

To satisfy this condition, I(x) should be in the form of e^{f(x)}, where f(x) is a function in x.

So let I(x)=e^{f(x)}. Then,

\longrightarrow\dfrac{d}{dx}\left[e^{f(x)}\right]=e^{f(x)}\cdot P(x)

\longrightarrow e^{f(x)}\cdot f'(x)=e^{f(x)}\cdot P(x)

\longrightarrow f'(x)=P(x)

\displaystyle\longrightarrow f(x)=\int P(x)\ dx

Hence the integrating factor,

\longrightarrow\underline{\underline{I(x)=e^{\int P(x)\ dx}}}

Well I'm keeping on solving the differential equation.

Putting (2) in (1),

\longrightarrow I(x)\cdot\dfrac{dy}{dx}+\dfrac{d}{dx}\left[I(x)\right]\cdot y=I(x)\cdot Q(x)

By product rule,

\longrightarrow\dfrac{d}{dx}\left[I(x)\cdot y\right]=I(x)\cdot Q(x)

\displaystyle\longrightarrow I(x)\cdot y=\int I(x)\cdot Q(x)\ dx\quad\!(+C)

That is,

\displaystyle\longrightarrow y\cdot e^{\int P(x)\ dx}=\int Q(x)\cdot e^{\int P(x)\ dx}\ dx\quad\!(+C)

where C is the integral constant.

Similar questions