Math, asked by sree4244, 1 month ago

The integrating factor of dy/dx+y tan x=sec x

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} + y \: tanx \:  =  \: secx

↝ Its a linear differential equation,

So, on comparing with

\red{\rm :\longmapsto\:\dfrac{dy}{dx} + py  =  q, \: where \: p \: and \: q \:  \in \: f(x)}

We get now,

\red{\rm :\longmapsto\:p = tanx}

and

\red{\rm :\longmapsto\:q = secx}

We know,

↝ Integrating Factor is evaluated as

\red{\rm :\longmapsto\:\boxed{ \tt{ \: I.F. =  {e} \: ^{\displaystyle\int\sf p \: dx}  \: }}}

So, on substituting the value of p, we get

\rm :\longmapsto\:I.F. \:  =  \:  {e} \: ^{\displaystyle\int\sf tanx \: dx}

\rm :\longmapsto\:I.F. \:  =  \:  {e} \: ^{log \: secx \: }

\rm \implies\:I.F. = secx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {e}^{logx}  \:  =  \: x \bigg \}}

Hence,

 \purple{\rm \implies\:\boxed{ \tt{ \: I.F. = secx}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Linear Differential equation is of the form

\red{\rm :\longmapsto\:\dfrac{dy}{dx} + py  =  q, \: where \: p \: and \: q \:  \in \: f(x)}

having Integrating Factor is

\red{\rm :\longmapsto\:\boxed{ \tt{ \: I.F. =  {e} \: ^{\displaystyle\int\sf p \: dx}  \: }}}

and Solution is

\red{\rm :\longmapsto\:\boxed{ \tt{ \: y \times I.F. = \displaystyle\int\sf (q \times I.F.) \: dx \: }}}

2. Linear Differential equation of the form

\red{\rm :\longmapsto\:\dfrac{dx}{dy} + px  =  q, \: where \: p \: and \: q \:  \in \: f(y)}

having Integrating Factor

\red{\rm :\longmapsto\:\boxed{ \tt{ \: I.F. =  {e} \: ^{\displaystyle\int\sf p \: dy}  \: }}}

and Solution is

\red{\rm :\longmapsto\:\boxed{ \tt{ \: x \times I.F. = \displaystyle\int\sf (q \times I.F.) \: dy \: }}}

Similar questions