Math, asked by tmanisha7815, 1 year ago

The Integrating Factor of the differential equation x\frac{dy}{dx}-y=2x^2 is
(A) e^{-x}
(B) e^{-y}
(C) \frac{1}{x}
(D) x

Answers

Answered by MaheswariS
0

Answer:

option (c) is correct

Step-by-step explanation:

Concept:

The integrating factor of the differential equation

\frac{dy}{dx}+Py=Q\:is\:e^{\int{P}\:dx}

x\frac{dy}{dx}-y=2x^2

Divide both sides by x

\frac{dy}{dx}-\frac{y}{x}=2x

comparing this equation with

\frac{dy}{dx}+Py=Q

we get

P=\frac{-1}{x}\\\\Q=2x

Integrating factor

=e^{\int{P}\:dx}\\\\=e^{\int{\frac{-1}{x}}\:dx}\\\\=e^{-\int{\frac{1}{x}}\:dx}\\\\=e^{-logx}\\\\=e^{logx^{-1}}\\\\=x^{-1}

=\frac{1}{x}

Note:

e^{logA}=A

Similar questions