Math, asked by pavansaaho21, 1 month ago

the integrating factor of x2ydx-(x3+y3)dy=0 is​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt \:  {x}^{2} ydx - ( {x}^{3} +  {y}^{3}  )dy = 0 \\

 \tt \: \implies \frac{dx}{dy}   =   \frac{ {x}^{3} +  {y}^{3}}{ {x}^{2}y } \\

 \tt \: \implies \frac{dx}{dy}   = \frac{x}{y}   +  \frac{ {y}^{2} }{ {x}^{2} }   \\

 \tt \: \implies \frac{dx}{dy}    - \frac{x}{y}    =  \frac{ {y}^{2} }{ {x}^{2} }   \\

 \tt \: \implies  {x}^{2} \frac{dx}{dy}    - \frac{ {x}^{3} }{y}    =  {y}^{2}    \\

Put \sf\:x^3=v

\sf\implies\:3x^2\frac{dx}{dy}=\frac{dv}{dy}\\

So,

 \tt \: \implies   \frac{1}{3} \frac{dv}{dy}    - \frac{ v}{y}    =  {y}^{2}    \\

 \tt \: \implies   \frac{dv}{dy}    - \frac{3 }{y} v   =  3{y}^{2}    \\

 \sf \: I.F. =  {e}^{ \int -  \frac{3}{y}dy }  =  {e}^{ - 3ln(y)}  =  \frac{1}{ {y}^{3} }  \\

So,

 \tt \frac{1}{ {y}^{3} } .v =  \int \frac{1}{ {y}^{3} } \cdot \: 3 {y}^{2}  dy \\

 \tt   \implies\frac{v}{ {y}^{3} }  =  \int \frac{3}{y }   dy \\

 \tt   \implies\frac{v}{ {y}^{3} }  =  3 ln(y) + C \\

 \tt   \implies\frac{ {x}^{3} }{ {y}^{3} }  =   ln(y^{3} ) + C \\

Similar questions