Math, asked by RitikChhipa1402, 3 days ago

The Integration of
 {x}^{2} {e}^{3x} dx
is


Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm  {x}^{2} {e}^{3x} \: dx

We know,

Integration by parts

\boxed{\tt{ \displaystyle\int\rm uv \: dx \:  = u\displaystyle\int\rm vdx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}u\displaystyle\int\rm vdx \bigg]dx \: }}

So, here

 \purple{\rm :\longmapsto\:u =  {x}^{2}}

 \purple{\rm :\longmapsto\:v =  {e}^{3x} }

So, using the above result, we have

\rm \:  =  \:  {x}^{2} \displaystyle\int\rm {e}^{3x}dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx} {x}^{2} \displaystyle\int\rm {e}^{3x}dx \bigg]dx

\rm \:  =  \:  {x}^{2}\dfrac{{e}^{3x}}{3} - \displaystyle\int\rm 2x\dfrac{{e}^{3x}}{3}dx

\rm \:  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2}{3}\displaystyle\int\rm x{e}^{3x} \: dx

Again, using integration by parts,

\rm \:  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2}{3}\bigg(x\displaystyle\int\rm {e}^{3x} \: dx  - \displaystyle\int\rm \bigg[\dfrac{d}{dx}x\displaystyle\int\rm {e}^{3x}dx \bigg]dx\bigg)

\rm \:  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2}{3}\bigg(\dfrac{x{e}^{3x}}{3}   - \displaystyle\int\rm  \frac{{e}^{3x}}{3} dx\bigg)

\rm \:  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2}{3}\bigg(\dfrac{x{e}^{3x}}{3}   -  \dfrac{{e}^{3x}}{9} \bigg) + c

\rm \:  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2x{e}^{3x}}{9}  + \dfrac{2{e}^{3x}}{27} + c

Hence,

\boxed{\tt{ \rm \: \displaystyle\int\rm  {x}^{2}{e}^{3x}dx  =  \: \dfrac{ {x}^{2}{e}^{3x}}{3} - \dfrac{2x{e}^{3x}}{9}  + \dfrac{2{e}^{3x}}{27} + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \:  \frac{d}{dx}   {x}^{n} =  {nx}^{n - 1}  \:  \:  \: }}} \\

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \: \displaystyle\int\rm  {e}^{ax + b}dx =  \frac{{e}^{ax + b}}{b} + c \:  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions