Physics, asked by moizshaikh605, 4 months ago

the intensity ratio of two coherent waves is 4:1. if they produce interference, the ratio of maximum to minimum intensity will be​

Answers

Answered by shadowsabers03
7

The intensity ratio,

\sf{\longrightarrow\dfrac{I_1}{I_2}=\dfrac{4}{1}}

If \sf{A_1} and \sf{A_2} are amplitudes respectively,

\sf{\longrightarrow\left(\dfrac{A_1}{A_2}\right)^2 =\dfrac{4}{1}}

\sf{\longrightarrow\dfrac{A_1}{A_2}=\dfrac{2}{1}}

We see \sf{A_1>A_2.}

When they produce interference, the ratio of maximum to minimum amplitudes will be,

\sf{\longrightarrow\dfrac{A_1'}{A_2'}=\dfrac{A_1+A_2}{A_1-A_2}}

\sf{\longrightarrow\dfrac{A_1'}{A_2'}=\dfrac{2+1}{2-1} }

\sf{\longrightarrow\dfrac{A_1'}{A_2'}=\dfrac{3}{1} }

Hence the ratio of maximum to minimum intensities will be,

\sf{\longrightarrow\dfrac{I_1'}{I_2'}=\left(\dfrac{A_1'}{A_2' }\right)^2}

\sf{\longrightarrow\underline{\underline{\dfrac{I_1'}{I_2'}=\dfrac{9}{1}}}}

Similar questions