Math, asked by sarithabathulla, 1 month ago

The intercepts a, b of a straight line on the co-ordinate axes are given by a + b = 5, ab = 6 then the equation of the line is​

Answers

Answered by Anonymous
0

Given a+b=5 __ (1)

ab=6 __ (2)

Substituting b from (2) in (1)

 \bold{⇒a+ \frac{6}{a} =  5⇒a^2 −5a+6=0}

 \bold{⇒a^2−2a−3a+6=0}

⇒a(a−2)−3(a−2)=0

⇒(a−3)(a−2)=0

∴a=2,3

substituting a=2,3 in (2)

 \bold{⇒b= \frac{b}{2}  =3(a=2)}

 \bold{b= \frac{b}{3}  =2(a=3)}

since a and b are +ve , the line intercept the

axes in first quadrant.

From right △AOB

 \bold{tanα= \frac{a}{b}  \: or \:  \frac{b}{a}}

 \bold{ \frac{ - 2}{3}  \: or \:  \frac{ - 3}{2}}

 \bold{ \frac{2}{3}  \: or \:  \frac{3}{2}}

slope of the line = tanθ

=tan(180−α)=−tanα

 \small \bold{Equation  \: of  \: the \:  line  \: for \:  slope \:  \frac{ - 2}{3} \: is }

 \small \bold{y =  \frac{ - 2}{3}x+2⇒3y=−2x+6}

 \small \bold{Equation  \: of  \: the \:  line  \: for \:  slope \:  \frac{  - 3}{2} \: is }

 \small \bold{y =  \frac{ - 3}{2}x+3⇒2y=−3x+6}

∴ Required equation are 2x+3y−6=0 and 3x+2y−6=0

(or) 2x+3y−6=0 or 3x+2y−6=0

Attachments:
Similar questions