Math, asked by spandanroy471, 7 months ago

The interest earned on ₹20,000 at the rate of 20% per annum for 1.5 years if compounded half-yearly is how much more than the simple interest earned on the same amount at the same rate of interest for the same period.​

Answers

Answered by ladnomamit1992
3

Step-by-step explanation:

compounded half yearly which means

20000=principle, 20/2= rate of interest, time= 3 years

short cut method

20000

20000+2000---> 1st year

20000+2000+2000+200-----> 2nd year

20000+2000+2000+2000+200+200+200+20---->3rd year

Then the compound interest is 26620 at the end of 3rd year

simple interest is (P×R×T)/100= (20000×20×1.5)/100= 6000

difference between c.i and s.i is 20620

Answered by InfiniteSoul
15

\sf{\orange{\boxed{\huge{\mathsf{Compound \: Interest }}}}}

⠀⠀⠀⠀

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Principle = Rs.20,000
  • Rate = 20%
  • Time = 1.5 years = 3 half years

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Compound Interest = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Amount = P \bigg( 1 + \dfrac{r}{100}\bigg)^t}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,000\bigg( 1 +\dfrac{20}{100}\bigg)^3}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,000\bigg( 1 +\dfrac{2}{10}\bigg)^3}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,000\bigg( \dfrac{10 + 2 }{10}\bigg)^3}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,000\bigg(\dfrac{12}{10}\bigg)^3}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,000\times\dfrac{12\times 12\times 12}{10\times 10 \times 10}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20,00\times\dfrac{12\times 12\times 12}{10\times 10 }}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 200\times\dfrac{12\times 12\times 12}{10}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20\times12\times 12\times 12}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20\times 144\times 12}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = 20\times 1728}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Amount = Rs. 34560}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{CI = Amount - Interest}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ CI = Rs. 34560 - Rs.20000}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ CI = Rs. 14560}}

⠀⠀⠀⠀

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Rs. 20000 will amount Rs.14560 as CI in 1.5 years at the rate 20% per annum compounded half yearly

⠀⠀⠀⠀

\sf{\orange{\boxed{\huge{\mathsf{Simple \: Interest }}}}}

⠀⠀⠀⠀

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Principle = Rs. 20000
  • Rate = 20%
  • Time = 1.5years = 3 half years

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Simple Interest = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{SI = \dfrac{P\times R\times T}{100}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SI = \dfrac{20000\times 20\times 3}{100}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SI = \dfrac{2000\times 20\times 3}{10}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SI = 200\times 20\times 3}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SI = 200\times 60 }}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SI = Rs. 12000}}

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Rs. 20000 will amount Rs. 12000 as simple interest in 1.5 years at 20% per annum

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf{\orange{\boxed{\huge{\mathsf{Compare }}}}}

⠀⠀⠀⠀

Rs. 14560 > Rs. 12000

⠀⠀⠀⠀

CI > SI

⠀⠀⠀⠀

Compare = Rs. 14560 - Rs. 12000

⠀⠀⠀⠀

Compare = Rs. 2560

⠀⠀⠀⠀

  • CI is greater than SI by Rs. 2560

⠀⠀⠀⠀


shashank32544: wrong answer
Similar questions