Math, asked by Anonymous, 3 months ago

THE INTERIOR ANGLE OF A REGULAR POLYGON IS 170° FIND THE NUMBER OF SIDES.​

Answers

Answered by Anonymous
6

Correct Question-:

  • The interior angle of a regular polygon is 170º. Find the number of sides of the polygon.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{  The\:number \;of\:sides\:of\:Regular\:polygon\:= 36\: Sides.}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{ The \:interior\: angle\: of \:a\: regular \:polygon \:is\: .\:=\:\frak{170 ^{⁰} }}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{ The \:number\: \: of \:a\:sides\:of\: regular \:polygon \:\: .\:}\end{cases} \\\\

Solution-:

  • \underline{\boxed{\star{\sf{\blue{  Formula\:applied\:for\:Side\:of\:Regular \:Polygon \;\:= \frac{180^{⁰}(n -2)}{n} = one\:interior \:Angle.}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{ The \:interior\: angle\: of \:a\: regular \:polygon \:is\: .\:=\:\frak{170^{⁰}}}& \\\\ \sf{n \: = \frak{ Number \;of\:Sides}}\end{cases} \\\\

Now ,

  • Substituting the value -:

  • \implies{\sf{\large {   \frac{180^{⁰}(n-2)}{n}= 170 ^{⁰} }}}
  • \implies{\sf{\large {   180 ^{⁰} (n-2)= 170n }}} _______________[ Cross Multiplication]
  • \implies{\sf{\large {   180n-360= 170n }}}
  • \implies{\sf{\large {   180n - 170n = 360 ^{⁰} }}}
  • \implies{\sf{\large {   10n= 360^{⁰} }}}
  • \implies{\sf{\large {   n = \frac{360}{10} }}}
  • \implies{\sf{\large {   n = 36 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{  n\: = 36.}}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\blue{  The\:number \;of\:sides\:of\:Regular\:polygon\:= 36\: Sides.}}}}}

______________♡____________________

Similar questions