Math, asked by junanxiety909, 3 months ago

The interior angles of a hexagon are in the ratio 1 : 1 : 2 : 2 : 3 : 3. Find the measure of each of its angles.

Answers

Answered by rameshmahat36
5

Answer:

Let the angles be 1x 1x 2x 2x 3x 3x

Step-by-step explanation:

1x+1x+2x+2x+3x+3x=number of sides of hexagon÷2

Answered by Anonymous
84

Answer:

  • The angles in the hexagon are 30°, 30°, 60°, 60°, 90°,90°

Step-by-step explanation:

Given :

  • The interior angles of a hexagon are in the ratio 1 : 1 : 2 : 2 : 3 : 3

To Find :

  • The measure of each of its angles.

Solution :

→ Now,

  • Let the angles be 1x, 1x, 2x, 2x, 3x, 3x

We know that,

  • The sum of the interior angles in a hexagon equals 360°

Framing an equation,

\longrightarrow \tt 1x + 1x + 2x + 2x + 3x + 3x = 360

\longrightarrow \tt 2x + 4x + 6x = 360

\longrightarrow \tt 12x = 360

\longrightarrow \tt x = \cancel\dfrac{360}{12}

\longrightarrow {\purple{\underline{\boxed{\pmb{\frak{x = 30}}}}\bigstar}}

Now let's find the angles,

\longrightarrow \tt 1x = 1(30) = 30

\longrightarrow \tt 2x = 2(30) = 60

\longrightarrow \tt 3x = 3(30) = 90

Verification,

\longrightarrow \tt 30 + 30 + 60 + 60 + 90 + 90 = 360

\longrightarrow \tt 60 + 120 + 180 = 360

\longrightarrow \tt 180 + 180 = 360

\longrightarrow \tt 360 = 360

∴ The angles in the hexagon are 30°, 30°, 60°, 60°, 90°,90°

Similar questions