The interior angles of a quadrilateral (2x+15), (2x-15), (3x+75), and (3x-25).
a) Find the value of x.
b) Find the smallest interior angle of the quadrilaterals.
c) Find the smallest exterior angle of the quadrilaterals.
Answers
Answer:
See the attachment.
Step-by-step explanation:
Step-by-step explanation:
We know that the sum of interior angles of quadrilateral is 360°.
So (2x+15)+(2x-15)+(3x+75)+(3x-25)=360°
a) 2x+15+2x-15+3x+75+3x-25=360°
10x+50=360
10x=360-50
10x=310
x=310/10
x=31
so, by applying the value for every interior angles
we get 2x+15
=2(31)+15
=62+15
=77°
2x-15
=2(31)-15
=62-15
=47°
3x+75
=3(31)+75
=93+75
=168
3x-25
=3(31)-25
=93-25
=68
b) The smallest interior angle is 47°. (2x-15)
we know that the exterior angle of a quadrilateral sum up 360°
so 360-77=283
360-47=313
360-168=192
360-68=292
c) The smallest exterior angle is 192°.