Math, asked by nuzhatk542, 11 months ago

The interior opposite angles of an exterior angle are in ratio 3:4 and the exterior angle is 140°. Find the three angles of the triangle​

Answers

Answered by kartikkaushal61
2

Answer:

Angle 1: 70

Angle 2: 80

Step-by-step explanation:

Let the common ratio be:x

Angle 1: 3x

Angle 2: 4x

Exterior angle= sum of 2 opposite interior angles.

.

. . 140°= 3x + 4x

140°= 7x

140/7=x

.

. . x= 20

Now,

Angle 1: 3×x= 3×20

3x=60

Angle 2: 4×x = 4×20

4x= 80.

Answered by amankumaraman11
0

We know,

 \sf An  \:  \: exterior \:  \:  \angle  \:  \: of \:  \: a \:  \:  \triangle \:  \:  is \:  \: sum   \:  \: of \\  \sf its \:  \: opposite \:  \: interior \:  \:  \angle s  \: .

Now,

 \implies3x + 4x = 140 \degree \\ \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 7x  = 140\degree \\ \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{140\degree}{7}  = 20\degree

Hence,

  \bf \: {1}^{st}  \:  \angle \:  \: of  \: \triangle \:  =  \red{60\degree} \\  \bf  {2}^{nd}  \:   \angle \:  \: of \:  \triangle \:  =  \red{80\degree} \\ \bf \:  {3}^{rd} \:    \angle \:  \: of \:  \triangle =  \red{40\degree}

Similar questions